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SUMMARY 

This document establishes the main foundations of the AI4REALNET project, in particular, the following 

key outcomes:  

• The formal specification of domain-specific use cases (UCs), replicating real-world operating 

scenarios involving human operators to apply innovative AI-based methods. This is 

complemented by a comprehensive set of quantitative and qualitative key performance 

indicators (KPIs) addressing socio-technical aspects.  

• The development of a domain-general conceptual framework that integrates social sciences 

and humanities (including psychology, ethics, and philosophy), human-centered design 

sciences, artificial intelligence (AI), and domain-specific expertise applied to critical 

infrastructures (power grid, railway network, and air traffic). 

USE CASES 

The methodology for formally documenting the project’s UCs involved several key steps: 

1. Identifying tasks at the network operators (i.e., RTE, TenneT, DB, SBB, and NAV) that are 

evolving or emerging with the development of AI and digital technologies. 

2. Refining this list and draft descriptions through consortium meetings, workshops with external 

stakeholders, public webinars, and literature reviews related to AI’s impact on the three 

network infrastructure domains. 

3. Basing the work on a thorough analysis of each network operator’s roadmap, internal 

organization, and the current regulatory framework, including anticipated short- and medium-

term developments. 

The network operators were responsible for describing the UCs and capturing the associated 

functional and non-functional requirements, supported by their domain experts and reviewed by R&D 

partners. The AI4REALNET project developed a template document based on the work presented in 

ISO/IEC TR 24030. Additionally, each UC identified a set of KPIs and specific business/task objectives 

aimed at capturing technical, economic, social, and human dimensions. The Assessment List for 

Trustworthy Artificial Intelligence (ALTAI) was also adopted as a comprehensive self-assessment tool 

across various dimensions. This tool was used to capture non-functional requirements related to 

trustworthy AI in the design of the UCs.   

The following UCs were identified: 

UC1.Power Grid. AI assistant supporting human operators’ decision-making in managing power grid 

congestion: Provide a human operator with remedial action recommendations aimed at safely 

managing overloads on the electrical lines and easing the workload of the human operator. 

UC2.Power Grid. Sim2Real, transfer AI-assistant from simulation to real-world operation: Provide a 

human operator with remedial action recommendations, considering a transfer from training (digital) 

to real-world environments. 
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UC1.Railway. Automated re-scheduling in railway operations: The re-scheduling task is performed in 

a highly automated manner by an AI-based re-scheduling system. It observes the real-time state of all 

the trains and tracks in the control area of interest and automatically detects the need to intervene, 

decides on an intervention, and executes this intervention. 

UC2.Railway: AI-assisted human re-scheduling in railway operations: Assist the human dispatcher in 

railway operations in re-scheduling train runs to fulfill all offered services and minimize delays for the 

customer.  

UC1.ATM. Airspace sectorization assistant: Partially and fully automate the sectorization process to 

assist the supervisor in deciding when and how to split and merge sectors to balance the workload of 

Tactical Air Traffic Controllers (ATCOs). 

UC2.ATM: Flow & airspace management assistant: Provide advice to ATCO about deviations with 

better sector capacity adherence and performance measured by an indicator of environmental area. 

Also, consider the need to review the sectorization plan due to the activation of military areas and 

required trajectory efficient deviations. 

CONCEPTUAL FRAMEWORK 

The AI4REALNET consortium adopted an interdisciplinary approach to develop its conceptual 

framework, integrating traditionally distinct fields such as psychology and cognitive engineering. This 

enabled the study of expert collaborative decision-making in complex scenarios, where automation 

plays a role, and the development of effective design and evaluation criteria to support human 

decision-making. The framework also drew on mathematics, decision theory, computer science, and 

specialized engineering domains, particularly energy and mobility. Systems engineering and theories 

adapted for trustworthy AI integration were used in designing the system’s operational, functional, 

and logical architecture to meet both functional and non-functional requirements of the UCs. 

The conceptual framework is structured into various layers: 

• The context, characteristics, impacts, and decision environment for critical network 

infrastructures are discussed based on the UC scenarios. This describes, in a unified way, the 

similarities and dissimilarities of the operating decision processes in the three critical 

infrastructures.  

• Decision-making from a socio-technical systems perspective (human agent), aiming for joint 

optimization to increase the whole system’s performance. Namely, to take requirements 

derived from characteristics of the social sub-system (i.e., human factors) and be able to 

exploit AI capabilities and potentials, the social sub-system also needs to be designed 

accordingly. 

• Decision-making process from the AI perspective (AI Agent) and the corresponding strategies 

and methods. It elaborates on the different characteristics an AI-based model should possess 

for efficient interactions between AI and human decision-makers in various situations and 

modes of interactions. 

• Epistemological and normative foundations of trustworthy AI and analysis of the different 

components of risk and their application to AI, focusing on safety-critical systems. 
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At the system design level for human-AI interaction, the focus shifts to translating these layers into 

practical applications. To enhance the connection between research questions and real-world 

applications, we developed a high-level conceptual prototype – the AI4REALNET system – that allows 

us to test and refine ideas, ensuring research outcomes meet practical needs. It will evolve during the 

project and serve as initial design guidelines for future applications. This system offers a hierarchical 

representation of the system from a technical perspective. The figure below shows the scope, context, 

and high-level view of the AI4REALNET AI-based (conceptual) system. 

 

The system’s context includes neighboring systems to provide real-time operational information 

(production information system) and implement decisions taken within the system in live operations 

(production dispatching system). Further, users, such as operators, supervisors, and regulatory agents, 

are also part of the context and interact with the system. 

In Level 1, the system is organized into modules based on function. The Human-Machine-Interaction 

module manages how AI interacts with humans, providing notifications, contextual information, and 
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assisting with tasks. The Adaptation module recognizes situations, adjusts human-AI interaction, and 

updates AI models based on feedback. The Prediction module forecasts events, assesses their impact, 

and stores important data. The Recommendation module suggests actions and explanations to 

operators, while the Execution module implements operational actions. Lastly, the Assessment 

module evaluates AI behavior, robustness, and fairness. 

In Level 2, the Prediction module, central to the system, includes an evaluation sub-module, simulation 

engine, AI agents, and the AI4REALNET digital environment. It receives current system data and 

requests simulations to predict events and consequences. Simulation results are evaluated and sent 

to the recommendation module, with all relevant data stored for future use. 

The generic process is illustrated with a high-level overview of the interactions between different sub-

systems, each broken down into specific functions. The figure below presents the logical architecture 

of the conceptual framework for an AI assistant (with humans maintaining full control), which is one 

of the three scenarios considered in AI4REALNET: AI-assistant to human (human in control), joint 

human-AI decision-making (including human-AI co-learning), and autonomous AI (human as a 

supervisor). 

 

Finally, this design process addresses key aspects such as robustness, uncertainty quantification, 

knowledge-assisted AI, human-AI collaboration, explainability, and multi-objective reinforcement 

learning, creating a unified conceptual framework for different modes of human-AI interaction. 
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1. INTRODUCTION 

Artificial Intelligence (AI) technology has the potential to enhance the flexibility and resilience of critical 

network infrastructures to address global challenges like climate change, energy transition, increasing 

demand from mobility infrastructures, and digital transformation. However, AI faces several 

challenges: ensuring reliability, transparency, and ethical adherence to prevent errors and adversarial 

attacks; managing the complexity and uncertainty from aging assets, climate change, and rising 

demand in energy and mobility networks; enabling effective human-AI collaboration through 

reciprocal learning and integration of human knowledge; and overcoming scalability issues in AI 

methods like reinforcement learning (RL) when applied to large-scale infrastructures. 

AI4REALNET aims to create a comprehensive multidisciplinary approach by combining emerging AI 

algorithms, open-source AI-friendly digital environments, and socio-technical design of AI-based 

decision systems with human-machine interaction. This aims to enhance the real-time and predictive 

operation of network infrastructures. The project focuses on three critical infrastructures — electricity 

network, railway, and air traffic management — vital to Europe and identified as priority sectors in 

national AI strategies. 

AI4REALNET envisions a balanced coexistence of human control and AI-based automation, divided into 

three levels: a) full human control (AI-assisted), b) co-learning between AI and humans, and c) 

trustworthy, human-certified full AI-based control. A detailed overview and discussion of the research 

ideas can be found in the project’s position paper (Mussi et al., 2024). 

Industry-relevant and domain-specific use cases drive the project activities for applying novel AI-based 

methods and that i) are focused on critical challenges and tasks of network operators, considering 

strategic long-term goals, and ii) reproduce real operating scenarios with human operators. The use 

case description follows the work of ISO/IEC TR 24030, which allows a formal and structured 

identification of functional requirements (for the AI-based decision systems and digital environments). 

The analysis of non-functional requirements follows the Assessment List for Trustworthy Artificial 

Intelligence (ALTAI) framework. Moreover, it facilitates a comprehensive understanding necessary for 

conducting a thorough risk assessment following the AI Act’s legal requirements.  

A comprehensive multi-disciplinary framework that supports the application, development, and 

validation of AI-based approaches within critical network infrastructures is needed to accommodate 

the use cases and associated decision-making processes and for the broad integration of AI in the 

operation tasks of critical infrastructures. The framework is built on the top of concepts such as Joint 

Control Framework (Lundberg and Johansson, 2021), Trustworthiness from Confiance.AI 

(Braunschweig et al., 2022; Gelin, 2024), and the Humane AI Ethical Framework (Dignum, 2019). Two 

key components are i) the conceptualization of trustworthiness and ethical foundations and ii) the 

analysis of human decision-making processes in real-world situations to derive qualitative descriptions 

of human decision-making.  

This understanding will inform the development of AI-based decision systems that are robust, ethical, 

and effective while being sensitive to contextual factors, as well as the evaluation of social-technical 

performance. Potential end-users of this framework are:  
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• AI developers, both from industry and academia, including human factors experts (human-in-

the-loop AI-based decision systems) that need to align their development work with a “real-

world” implementation perspective. 

• Innovation managers from critical infrastructure operators who want to ensure that the 

resulting system will serve their needs as well as specific functional and non-functional 

requirements for the products. 

• Network operation managers who want to develop a strategic and long-term vision for human-

AI teaming, corresponding architectures, and requirements. The framework can be followed 

to build systems that satisfy/serve their needs.  

• Regulatory bodies from the European Union (e.g., EU AI Office, AI Advisory Forum) and 

industry.  

• Standardization organizations that aim to standardize the application of AI across various 

critical infrastructures, ensuring consistency, quality, and compatibility of AI solutions. 

The remainder of this report is organized as follows: Section 2 describes the UC methodology and the 

six industry-driven UCs covering their goals, main functional and non-functional requirements, 

challenges, and key performance indicators (KPIs). Section 3 presents the conceptual framework, 

divided into the decision-making process through the human perspective and sociotechnical system, 

the AI perspective and corresponding strategies and methods, and the validation of the decision-

making process through the trustworthiness and ethical assessment framework. Section 4 presents 

the concluding remarks. 

The main body of the document is complemented by several annexes: Annex 1 with use case template; 

Annex 2 with UCs description; Annex 4 with a summary of the ALTAI requirements, Annex 4 with 

context, characteristics, impacts, and evaluation of the decisions in the critical infrastructures.  
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2. USE CASES AND METHODOLOGY 

The following Sections detail the context, concepts, tools, description, and benefits of the Use Case 

(UC) methodology from AI4REALNET applied to critical infrastructures (see Section 2.1). Initially 

developed for software and systems engineering in the 1980s and 1990s, the UC methodology has 

since been extended to business and system process modeling. It has extensively been used within 

several domains, such as manufacturing, smart energy grids, and mobility, among others.  

A summary description of the six industry-driven UCs from the AI4REALNET project is presented in 

Section 2.2, and the KPIs in Section 2.3. The project adopted the Assessment List for Trustworthy 

Artificial Intelligence (ALTAI) as a comprehensive tool for self-assessment across various dimensions, 

and Section 2.4 described how this methodology was applied to capture non-functional requirements 

related to trustworthy AI in the UC design.   

2.1 METHODOLOGY 

2.1.1 HISTORY OF THE METHODOLOGY 

The first UCs were written in the 1980s by Ivar Jacobson, a Swedish software engineer working at 

Ericsson, in order to define the architecture of one of the company’s information systems. Developed 

as part of an Object-Oriented Software Engineering method, they were initially meant to describe 

situations or scenarios of usage of a given system. The UC methodology was significantly enriched and 

developed in the 1990s and 2000s by Alistair Cockburn, especially in his book “Writing Effective Use 

Cases,” published in 2000, and by Kurt Bittner and Ian Spence, 2003. 

Originally developed as part of the IntelliGrid Architecture developed by the Electrical Power Research 

Institute (EPRI), as a means to implement the “IntelliGrid vision” of the automated, self-healing, and 

efficient power system of the future, the International Electrotechnical Commission (IEC) Publicly 

Available Specification (PAS) 62559:2008 was issued to define a methodology for power system 

domain experts to determine and describe their user requirements for automation systems based on 

their business goals. Since its release in January 2008, the use case methodology outlined in IEC PAS 

62559 has seen growing adoption within standardization efforts. This led to recognizing a need for a 

structured framework to ensure that IEC experts could consistently present use cases. In February 

2010, the IEC Standardization Management Board SG3 recommendation 7 requested the urgent 

delivery of a generic use case repository for all Smart Grid applications, introduced a need to transform 

IEC PAS 62559 to an IEC 62559 standard to support the development of an IEC use case repository and 

to provide support for the use case methodology in general. 

In the field of AI, the International Organization for Standardization (ISO) Technical Committee ISO/IEC 

JTC 1/SC 42 released a comprehensive document that compiles a wide range of AI use cases spanning 

different domains and sectors: “ISO/IEC TR 24030:2024. Information technology. Artificial intelligence 

(AI) Use cases”. This document serves to aid in the establishment of AI standards, fostering 

collaboration, and enhancing understanding of both the potential and challenges presented by AI 

across industries. The technical committee used a template for collecting UC descriptions based on 

ISO/IEC 20547-2, IEC 62559, and the Institute of Electrical and Electronics Engineers (IEEE) P7003. 

https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment
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The design of social-technical systems with AI technology calls for cooperation between experts from 

several different domains (AI, domain-specific knowledge from areas such as power systems, railway, 

air traffic control (ATC), social and cognitive sciences, and human-computer interaction, among 

others). In the development and design of these systems, adherence to standards is crucial for 

achieving solutions that are interoperable, safe, secure, and cost-effective. Therefore, a common 

methodology for UC design is required for all involved stakeholders, and it should include terminology, 

quality guidelines, and workflows. This is essential not only during project development but also in the 

process of standardization work. 

2.1.2 DEFINITIONS 

According to IEC 62559-2, a UC describes the functions of a system under discussion (SuD) in a 

technology-neutral way. It identifies participating actors that can, for instance, be other systems or 

human actors that are playing a role within a UC. It consists of a specification of a set of actions 

performed by a SuD that yields an observable result that is of value for one or more actors or other 

stakeholders of the system. In other words, it describes, in text format, how one or several actors 

interact within a given system to achieve goals. UCs can be specified on different levels of granularity 

and are, according to their level of technological abstraction and granularity, described either as 

business use case (i.e., describes a general requirement, idea, or concept independently from a specific 

technical realization like an architectural solution) or system use case (i.e., describes in detail the 

functionality of a business process).  

 In order to clearly explain the definition, it is important to further detail the different concepts used. 

• An Actor can be defined as anyone or anything with behavior. It can include: 

o Roles – the external intended behavior of a business party that cannot be shared, such 

as network operator, service provider, or regulator. 

o Persons – examples: human operator. 

o Information Systems – examples: Supervisory Control and Data Acquisition (SCADA), 

transport management system. 

o Physical components – examples: energy storage, airplane, train. 

• The SuD defines the scope of a UC or a set of UCs, i.e., its boundaries. In AI4REALNET, the 

scope of the SuD is the AI-based decision system and the human-machine interaction to be 

designed, i.e., it is concerned with using AI technology to achieve a specific goal (for the 

organization, human operator, or citizens) by complementing and augmenting human 

abilities. 

UCs are, above all, a textual description. Existing literature on the methodology has provided several 

UC templates. The AI4REALNET project adapted the IEC 62559-2 standard that defines the structure of 

a UC template, template lists for actors and requirements, and their relation to each other. It is a 

standardized template for describing UCs defined for various purposes, such as use in standardization 

organizations for standards development or within development projects for system development. 

The AI4REALNET adaptation considers the version presented in ISO/IEC TR 24030 to describe AI use 

cases, which is also based on ISO/IEC 20547-2, IEC 62559, and IEEE P7003. 

UCs can also be depicted in diagrams using modeling languages to facilitate the presentation and the 

validation of Use Cases. The most commonly used standard for modeling use cases is the Unified 
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Modeling Language (UML), a standardized general-purpose modeling language in the field of software 

engineering that can also be used for business modeling. The AI4REALNET decided not to use UML 

descriptions for the use cases, but rather to put the main focus on the textual descriptions.  

2.1.3 USE CASES DESIGN AND WRITING PROCESS 

2.1.3.1 IDENTIFICATION 

In order to identify the UCs to be described in the present deliverable, the AI4REALNET project 

iteratively identified and defined the tasks at the network operators that are evolving or being created 

with the development of AI technologies and digitalization. This work began with the use cases defined 

in the Description of Action of the project and the results of consortium meetings, workshops with 

stakeholders, public webinars (including the possibility of receiving inputs via public consultation), and 

an analysis of the literature related to the AI impact of the three network infrastructures.  

Furthermore, the network operators based this work on a thorough analysis of their roadmap, their 

internal organization, as well as the current regulatory framework and its evolutions in the short and 

medium term. This allowed them to evaluate the potential gaps to be closed to implement the 

identified AI-based processes and the impact on their organization. For each domain, two UCs were 

selected to be fully described. 

2.1.3.2 WRITING AND REVIEW PROCESSES 

The AI4REALNET project agreed to appoint the network operators (RTE, TenneT, DB, SBB, and NAV) as 

responsible for describing the selected UCs and capturing the associated functional and non-functional 

requirements, with the support of their domain experts and reviewed by the partner Research 

Institutes.  

For each UC’s process, the network operator responsible for describing it in UC detailed the activities 

of the process (or ‘steps’ of the Use Case) and the associated business/operational rules – including an 

analysis of the consistency with regional and national regulatory and legal frameworks and 

requirements. This work will serve as a basis for identifying the scenarios to be implemented in the 

digital environments of Task 1.3 and the associated functions to be developed within the project (link 

with WPs 1-4). 

The network operators split between the identified UCs according to their respective resources 

allocated to the project and their domain of expertise. Each of them internally organized the 

requirements gathering and the UC writing processes. In particular, they focused on capturing 

functional and non-functional requirements and not the solutions or means required to achieve the 

objectives of the UC. To do so, the AI4REALNET project elaborated a Word UC template based on the 

template presented in ISO/IEC TR 24030 and available in Annex 1, which is summarized in Figure 1. 
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FIGURE 1 – USE CASE TEMPLATE AND METHODOLOGY 

One of the most notable changes made to the ISO/IEC TR 24030 template was related to the 

identification of features from the real environment, the definition of operational scenarios, and the 

inclusion of non-functional requirements (e.g., using the ALTAI framework).  

To fill the AI4REALNET UC template, each network operator started with a short version of the 

template (focused on the objectives, narratives, and identification of the KPIs and scenarios) and 

conducted interviews and workshops with the relevant experts and external stakeholders to describe 

the AI-based processes, their activities, and the associated information exchanges. The domain experts 

focused on detailing the business needs/rules and the associated functional and non-functional 

requirements while striving to be as generic as possible in their descriptions to avoid national or 

organizational specificities. To do so, the following workshops with internal (i.e., in-house experts) and 

external stakeholders were conducted per domain: 

• Railway: 1 Feb 2024, in English with 20 participants (14 were external stakeholders), 5 Feb 

2024, in German with 21 participants (10 were external stakeholders). 

• Power grid: 23 Jan 2024 in English with 35 participants (29 were external stakeholders). 

• ATM: 27 Mar 2024, in English with 38 participants (3 were external stakeholders). 

These workshops were focused on receiving feedback for the following points: 

• Relevance of the UC 

• What is the role of humans in each UC? 

• Risks associated  

• Are relevant scenarios missing? 

Finally, the research partners reviewed each of the UCs. This work allowed the person responsible for 

writing the UC to detail some of the identified business rules and needs further. 

To validate the use cases widely and collect additional input, a public webinar was organized on 3 April 

2024 (video here), and a form was created on the website for public consultation and feedback about 

the use cases during the project.  

 

AI Use Case

Use Case in text form

Scope Goal

FeaturesKPI Societal Concerns

Scenarios & Preconditions & Steps

Narrative

Standardization EnvironmentActors

Information Exchanged

Requirements

https://www.youtube.com/watch?v=ZcjQ7iMTVXM
https://ai4realnet.eu/public-consultation/


AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

20 

2.1.4 IDENTIFICATION OF REQUIREMENTS 

UCs are designed to describe user requirements, i.e., all the functional and some of the non-functional 

requirements of a given system – whether it is a business process or a function. 

User requirements can be defined as “the requirements of the function based on the business needs, 

without explicitly identifying any specific technologies or products. The same document can also cover 

’non-functional’ requirements, such as constraints, performance, security, and data interactions with 

other applications or systems”. In other words, they “define ’what‘ is needed without reference to any 

specific designs or technologies” (IEC/PAS 62559). 

There are two types of requirements: 

• Functional requirements capture the intended behavior of the system. This behavior may be 

expressed as services, tasks, and functions that the system must perform. Use cases are a 

valuable tool to capture the functional requirements of a system. 

• Non-functional requirements capture general restrictions the system is subject to, such as 

pre-existing architectural constraints, architectural qualities (extensibility, flexibility, etc.), 

performances, reliability, and fault tolerance, among others. 

o Examples of non-functional requirements in the AI domain (Zhang et al., 2020a) 

include: 

▪ Robustness, such as fault tolerance, adaptability to data changes, and acceptable 

performance levels under adversarial events. 

▪ Efficiency, such as response times, frequency of updated results, scalability, 

energy consumption, and computational time. 

▪ Interpretability, such as the capacity to explain recommendations, adaptability to 

different levels of human-AI interaction, and model transparency. Note that 

interpretability can also be considered in the functional requirements. 

▪ Regulatory and legal, such as AI Act requirements, compliance with existing 

operational policies, and audits. 

▪ Security requirements include confidentiality, access restrictions, detection of 

failures and/or intrusions, failure management, and other safety, security, and 

failure issues. 

▪ Data management requirements include sizes, numbers of devices, amounts of 

data, scalability, expected growth over time, data access methods, data 

maintenance, and other data management considerations. 

▪ Interoperability issue. 

As explained in Section 2.4, the ALTAI was used to uncover additional non-functional requirements 

for each UC. However, it is important to mention that the UCs do not capture all of the non-functional 

requirements. First of all, they do not intend to describe algorithms or aspects related to the design of 

a system’s user interface. Including these elements in the description only adds complexity and length 

to the UC, which should ideally be as simple and as concise as possible. Besides, UCs, to be considered 

generic, should not be based on specific technologies, products, or solutions. 
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2.1.5 IDENTIFICATION OF KPIS 

Each use case has specific Key Performance Indicators (KPIs) that are linked to specific business/task 

objectives and are intended to capture the technical, economic, social, and human dimensions. These 

KPIs are also linked with the AI technical performance assessment functionalities embedded within 

existing AI-friendly digital environments (such as Grid2Op, Flatland, and BlueSky), but are not 

constrained by the capabilities of the digital environments and were defined to fully cover an 

evaluation in a real-world operational setting. Furthermore, it follows the socio-technical framework 

from (Weidinger et al., 2023), which, in addition to the technical components of an AI system, also 

considers human and systemic factors. For instance, it considers the context and interaction with the 

human operator. 

These KPIs serve the dual purpose of measuring the effectiveness of the AI-based decision systems and 

identifying weaknesses and areas for enhancement. While there is no standardized list or definition, 

the definition of these KPIs was carefully produced by the authors of each UC using their domain 

knowledge, often supplemented by insights from a literature review (particularly relevant for 

measuring the different human-related factors). 

2.1.6 BENEFITS OF THE METHODOLOGY FOR AI4REALNET 

The UC methodology allows the representation of the characteristics of a complex system according 

to structuring and is, at the same time, an iterative method, which makes the development of UC both 

a science and an art (IEC 62559-2). The number of UCs initially identified and their content may vary 

during the writing and review process, as several UCs can be merged into one or a UC split into multiple 

UCs. They can also be detailed in successive steps and over a variable period of time, according to the 

needs and the priorities of the organization, project, or system under design. All actors can easily 

understand this method via a user-oriented writing style. 

Secondly, the methodology is a collective bargaining process that is based on a pragmatic approach. 

It is designed to involve and actively engage different stakeholders (e.g., executives and managers, 

business experts and analysts, AI experts, project engineers, and policymakers) from various countries, 

organizations, and domains during the writing and review process. This provides an exhaustive and 

accurate list of requirements for the system under study and ensures that no topic or point of view has 

been left aside. 

Thirdly, it consists of a coherent and structured description, which allows the analyses of key issues 

according to different levels or perspectives while ensuring global consistency: 

• At a strategic level, with the identification of stances or assumptions related to the business 

model of a given AI-based decision system and their links with applicable regulations. 

• At a business level, with the description of business processes and activities, as well as the 

interactions of several internal and/or external roles/systems to enable or execute them. 

• At an information system level, with a detailed description of the functions supporting the 

business processes and the information flows they imply. 

Besides, a UC can be used to analyze standards to determine whether they support the requirements 

described in a UC or need to be further developed to close existing gaps. 
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The UC methodology is particularly appropriate for describing AI-based decision systems, business 

processes, and functions evolving with AI technologies and digitalization, as it allows domain experts 

to brainstorm new requirements. On this basis, its use is relevant to identify the impact of the changes 

and opportunities brought by AI technologies, market development, or regulations and to answer 

questions such as which existing business processes/ functions may or should evolve with AI 

technology?, or which new business processes/ functions may or should be implemented to integrate 

AI-based systems?. 

Finally, as discussed in (Brajovic et al., 2023), a crucial preliminary measure for implementing a system 

certification (e.g., in accordance with the AI Act) involves describing a UC that provides the auditing 

authority with a concise overview of the current task and the AI application. This overview facilitates 

the comprehensive understanding necessary to conduct a comprehensive risk assessment. 

Furthermore, the UC serves as a valuable tool during the development phase, ensuring adherence to 

compliance standards and fostering the creation of a trustworthy and resilient AI system. Notably, this 

practice aligns with the AI Act’s requirement for documenting Use Cases, particularly in high-risk 

application scenarios. 

2.2 AI4REALNET USE CASES 

2.2.1 OVERVIEW 

Figure 2 presents an overview of the AI4REALNET UCs. The complete description of the use cases 

according to the project template can be found in Annex 2. 
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FIGURE 2 – AI4REALNET USE CASES OVERVIEW 

2.2.1.1 POWER GRID DOMAIN 

Business problem: Electricity networks are transforming as the ongoing decarbonization and 

digitalization introduce clean generation technologies, electrify demand, enable demand-side 

flexibility, and digitize and/or add new devices. This directly impacts supervision systems in control 

rooms, which have to a point where they are no longer cognitively manageable. Networks are also 

aging, and infrastructure developments are more limited, yet integrate more automata. AI can help to 

address more numerous, complex, and coordinated decisions, increasing uncertainty, overcrowded 

and fragmented work environments with multi-screen applications, and increasing human operator 

cognitive load. 
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Today's operations: Power system engineers are highly specialized, requiring thorough studies, 

accurate planning, and complex decision-making rather than merely following established protocols. 

They depend significantly on simulation tools, using both real-time and forecast data. However, they 

have limited access to decision-support tools like automated assistants. When faced with a problem, 

they manually explore solutions and verify their decisions using their simulation tools. They can adjust 

line connectivity on the grid to redirect power flows, modify (re-dispatch) generation levels, limit 

consumption by a small percentage, or use battery storage to change power flows in the electrical grid. 

These potential flexibilities require them to identify the most effective actions for each specific 

situation or context. Despite the range of options, their process relies heavily on experience and 

manual simulation to determine appropriate remedial measures. 

Key stakeholders: Transmission system operators (TSOs), human operators, transmission grid users, 

and electricity market participants. 

UC1.Power Grid: AI assistant supporting human operators’ decision-making in managing power grid 

congestion 

Objectives: The goal of a TSO, and thus human operators in the control room, is to control electricity 

transmission on the electrical infrastructure (transmission grid) while pursuing multiple objectives, 

firstly to keep the system state within acceptable limits and:  

• Safely manage overloads on the electrical lines and, more specifically, remedial action 

recommendations; 

• Make the most of the renewable energies installed by limiting the emergency redispatching 

call to thermal power plants emitting greenhouse gases; 

• Ease the workload of the human operator needed to fulfill his/her missions; 

• Integrate explainability, transparency, and trust considerations for the human operator. 

UC short description: The AI assistant oversees the transmission grid, using SCADA data and Energy 

Management System tools to identify issues and categorize them for human intervention. It monitors 

power flows, adhering to defined operational conditions. Anticipating problems, it sends alerts to the 

operator with confidence levels, avoiding excessive alerts to maintain operator focus. Action 

recommendations include topological changes, re-dispatching, and renewable energy curtailment. The 

human operator selects an action or seeks more information, exploring alternatives. After the operator 

decides, the AI assistant provides feedback through load flow calculations and logs decisions for 

continuous learning and interaction improvement. This UC only addresses congestion issues, even if 

other types of issues can arise on the Transmission Grid and are handled by the operators (e.g., voltage 

values outside prescribed upper/lower limits). 

System description and role of the human operator: This UC describes an AI assistant that provides a 

human operator with recommendations for actions and/or strategies, considering the 

abovementioned objectives. The AI assistant shall also act in a “bidirectional” manner, i.e., capitalize 

on the actions and the feedback from the operator with a continuous “online” learning process. 

Different modes of interaction between AI assistants and human operators are possible, ranging from 

“full human control” to “full AI control.” The selected mode depends on the industry domain and 

context. In this UC, an ex-ante choice is made to apply a hybrid interaction where the human operator 

gets the final word on AI assistant recommendations. 
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Key benefits and impact of AI: Minimize operational costs; facilitate energy transition by reducing 

renewable energy curtailment and improving carbon intensity of actions; reduce the workload of the 

human operator; increase resilience to extreme (natural and man-made) events. 

UC2.Power Grid: Sim2Real, transfer AI-assistant from simulation to real-world operation 

Objectives: Assess the capability of an AI assistant to be used for the operation of a “real” transmission 

grid, in the sense that the “real” environment does not exactly behave as the one available to the agent 

(that is implemented in the AI assistant) during training and simulation procedures, even if they share 

the same functional properties (same grid components and topology), and operational constraints. 

The main objectives are: 

• Look at additional technical considerations to successfully deploy an AI assistant in the real 

world besides its sole ability to find solutions to simulated situations. 

• Improving human trust when such systems are deployed in real-world environments. 

• Allowing for iterative human-AI refinements with human feedback and insights. 

UC short description: Outlines two paths for an AI assistant to manage a transmission grid. 1) In coping 

with real-world conditions, the AI assistant monitors grid situations, raises alerts for human 

intervention, and provides action recommendations, considering uncertainty from noisy and partially 

missing data. The human operator makes decisions based on AI suggestions, with feedback loops to 

continuously improve interactions and learn from realized actions. 2) When data limitations prevent 

full autonomy, the AI assistant alerts the human operator due to missing or poor-quality data. The 

operator can provide missing information to aid the AI in such cases. Enriched context, including 

human input and decisions, is logged for continuous learning, enhancing the AI assistant’s robustness 

in making recommendations for grid actions. 

System description and role of the human operator: The AI assistant can still recommend actions to 

the human operator even with lower-quality data than used in training. However, this data may not 

enable fully autonomous recommendations, requiring the AI to seek additional feedback from the 

operator and raise an inaccuracy alert. When the AI cannot evaluate the need for action or a 

recommended action fails to produce the expected outcome, the operator can provide specific missing 

information to assist the AI in forecasting system states and assessing recommendations. As for the AI-

assistant training, the human operator’s decision and perception will rely on "theoretical simulations" 

(training and simulation tools). 

Key benefits and impact of AI: Minimize operational costs; facilitate energy transition by reducing 

renewable energy curtailment and improving carbon intensity of actions; reduce the workload of the 

human operator; increase resilience to extreme (natural and man-made) events. 

2.2.1.2 RAILWAY NETWORK DOMAIN 

Business problem: Growing environmental awareness and changing policies for mobility will lead to 

considerably more demand from railway network capacity, denser traffic, and a further need for 

efficiency and resilience of railway traffic management. Novel dispatching technologies or huge 

infrastructure investments are inevitable to maintain or improve the current quality of services. AI-

based support systems can be developed to enhance dispatchers’ capabilities, aiming to automate 

some of today’s decision-making processes and provide support and input for human decision-making 

in complex operating scenarios. 
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Today's operations: In railway operations, the already densely planned schedules are disturbed by 

unexpected events, such as delays, infrastructure defects, or short-term maintenance. The execution 

of the planned timetable can only be achieved by acting on these events with frequent adaptation and 

re-scheduling of the planned train runs. Today, maintaining smoothly running operations requires that 

in operational centers, highly skilled personnel monitor the flow of traffic day and night and quickly 

make re-scheduling decisions. Re-scheduling measures include changing a train’s speed, path, or 

platform. In a densely utilized railway network, local re-scheduling decisions potentially affect the 

entire flow of traffic, and their effect can propagate far into the future. This means that the re-

scheduling task is a complex decision-making task that must integrate much context information under 

time constraints. 

Key stakeholders: Railway network operators, network supervisors, railway undertaking operation 

managers, passengers, government, and society. 

UC1.Railway: Automated re-scheduling in railway operations 

Objectives: The system's objective is to fully automate re-scheduling in railway operations to fulfill all 

offered services and minimize delays for the customer (passenger). 

UC short description: Unexpected events, such as infrastructure malfunctions or delays, can occur in 

railway operations. In this case, the automated system must re-calculate the schedule so the requested 

services can be fulfilled with as little delay as possible. Adapting the schedule includes interventions, 

such as changing the speed curves of trains, changing the order of trains at the infrastructure element, 

changing the routes of trains, or changing the platform of a commercial stop at a station. An automated 

AI-based system is designed to manage and optimize railway schedules in real-time, ensuring efficient 

rail network use while minimizing passenger delays. The system is constantly monitored by a human 

operator who can adjust the system’s configuration and identify the need for adaptation and re-

training. 

System description and role of the human operator: An AI-based re-scheduling system performs the 

re-scheduling task in a highly automated manner. This system observes the real-time state of all the 

trains and tracks in the control area of interest and automatically detects the need to intervene, 

decides on an intervention, and executes this intervention. Such an AI system for highly automated re-

scheduling in operations is something new and unusual. The approach followed here is a first step 

towards introducing such a system. The highly automated AI system is treated as a new tool that is 

supervised and evaluated by an expert. In operations, the AI system re-schedules in a fully automated 

manner while the human supervisor monitors: 

• The system's state in operations (e.g., number of trains, potential bottleneck in current and 

planned network usage) 

• KPIs for the actual situations (e.g., current delay) 

• Confidence/certainty of the AI system 

• Intensity of intervention (how much changes to the current operational plan did the AI 

perform, e.g., change platform) 

• The supervisor uses this information to: 

• Decide at which point it would be advisable to switch off the AI system and take over control. 

• Decide to re-configure/adjust the system in operations. 
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Key benefits and impact: Improve punctuality of trains; increase the speed in response to disruptions 

or changes; better use of the available capacity in the railway network. 

UC2.Railway: AI-assisted human re-scheduling in railway operations 

Objectives: Aims to use AI-based methods to assist the human dispatcher in railway operations in re-

scheduling train runs to fulfill all offered services and minimize delays for the customer (passenger). 

UC short description: An AI-assistant system supports the human dispatcher. This system receives the 

real-time state of all the trains and tracks in the dispatcher’s control area and derives possible 

dispatching options in case of deviations from the pre-planned schedule due to disruptions or delays. 

The options are presented in near real-time to the dispatcher and consist of actions the dispatcher can 

perform to bring the trains back or close to their pre-planned schedules. At any time during operations, 

the human-AI team can detect an emerging deviation of the actual state of the system from the 

planned state. The re-scheduling process can be initiated by various triggers such as infrastructure 

changes, train delays, equipment malfunctions, or potential future issues. The system is designed to 

detect these deviations in real-time and assess their impact on the overall schedule. The system also 

predicts issues that might become relevant in the future. The human learning process (e.g., to detect 

emerging deviations or to develop solutions) is explicitly supported by human-AI interaction. 

System description and role of the human operator: The human provides feedback (e.g., context 

unknown to the system), which is used by the AI to adapt the solutions. The human agent can choose 

to select one of the suggestions provided by the AI systems, initiate a new solution search, or choose 

their own course of action. Alternatively, humans formulate a hypothesis, and the AI system provides 

evidence for and against these hypotheses. Moreover, a human supervisor reviews the system's 

performance, analyzing how effectively it responded to deviations and the impact on service delivery. 

Based on this review, adjustments are made to the system's parameters, such as altering the 

prioritization criteria, adjusting acceptable delay thresholds, or refining the algorithm for schedule 

recalculations. 

Key benefits and impact: Improve punctuality of trains; increase the speed of response to disruptions 

or changes; better use of the available capacity in the railway network. 

2.2.1.3 AIR TRAFFIC MANAGEMENT DOMAIN 

Business problem: Air traffic density in European airspaces is steadily increasing. At the same time, 

pressing economic and environmental concerns force a fundamental shift towards time- and 

trajectory-based air traffic operations. Taken together, increased traffic loads and operational 

complexities may eventually drive the workload peaks of the tactical air traffic controller (ATCO) 

beyond acceptable thresholds, threatening the overall safety of the ATM system and hindering a 

smooth transition toward a sustainable future of ATM. Furthermore, for instance, in the Lisbon Flight 

Information Region (FIR), serviced by NAV Portugal, operational complexities arise from the activation 

of military areas, which can significantly restrict the usage of the upper airspace for General Air Traffic, 

requiring traffic to deviate horizontally, especially when in combination with unexpected events. 

Today's operations: Today, sectorization is the sole responsibility of the ATC supervisor, who 

exclusively decides when and how to split and merge sectors best, warranted by situational demands 

and available ATCO personnel. Only scattered information is available on different platforms to aid 

ATC supervisors in this task. Still, there is no traffic pre-analysis tool and/or integrated decision-support 
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system to assist in, or even fully automate, the structuring of sectors with trajectory efficient routes 

(e.g., flight time and fuel burn) and sectorizations to keep the workload of the ATCO within acceptable 

thresholds, i.e., without exceeding sector capacity limits.  

Key stakeholders: ATC and Flow Management Position (FMP) staff manager/supervisor, air navigation 

service provider (ANSP) responsible for the flight information region, tactical air traffic controller, 

airlines, and pilots. 

UC1.ATM: Airspace sectorization assistant 

Objectives: To partially and fully automate the sectorization process to assist or replace the ATC 

supervisor in deciding when and how to split and merge sectors to balance the workload of tactical 

ATCOs. 

UC short description: At ATC Centers, an operational supervisor exclusively decides when and how to 

split and merge sectors best, warranted by situational demands and available ATCO personnel. The 

degrees of freedom in sectorization involve considering horizontal (2D geometry) and/or vertical 

(altitude) constraints and can thus result in sectors split horizontally and/or vertically. Under nominal 

conditions, the supervisor typically can install several pre-fab sectorization options. However, 

unexpected events, such as deteriorated weather conditions, flight emergencies (e.g., aircraft 

equipment failure), and unscheduled ATC personnel shortages (e.g., due to sickness), may require non-

standard sectorizations to be installed. An AI assistant, capable of operating under various levels of 

automation, will provide recommendations or even execute decisions on splitting the sector best 

horizontally, vertically, or both to balance the ATCO workload while ensuring safety and efficient traffic 

flows. It will also act bidirectionally by allowing the human operator to nudge the AI-generated 

recommendations in more favorable directions. 

System description and role of the human operator: The system automatically observes the real-time 

data from all relevant ATM platforms, predicts how and when to sectorize, and implements prediction 

results either as recommendations (to the human supervisor) or automatically installs the sectorization 

plan. The AI system can be considered a new tool supervised and evaluated by a human expert. The AI 

system communicates its decisions on an auxiliary display that, for example, visualizes sector 

configurations on a map-like interface. At lower levels of automation, the role of the human operator 

(here, the ATC supervisor) is to evaluate the AI-based recommendations by requesting additional 

information and explanations, accepting or rejecting advisories, and nudging AI decisions in a different 

direction by manual interventions. All decisions and interactions will be logged, allowing the AI system 

to learn from human preferences continuously. At higher levels of automation, the AI 

recommendations are executed based on “management by consent” (= AI implements only when the 

human accepts) or “management by exception” (= AI implements, unless the human vetoes). At the 

highest level of automation, the AI system is automatically implemented, and humans can only revise 

the system’s decisions afterward. 

Key benefits and impact of AI: Facilitate continuing growth of air traffic demand while maintaining 

high safety. Improve predictability of a certain sectorization over a certain time horizon. 

UC2.ATM: Flow & airspace management assistant 

Objectives: The system's objective is related to the flight execution phase when a military area is 

activated, and the ATC must issue deviations to avoid the activated area. The goal is to recommend 
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deviations with better sector capacity adherence and performance measured by an indicator of the 

environmental area – en-route flight inefficiency of the actual trajectory. The UC also considers the 

need to review the sectorization plan due to the activation of military areas and the required 

trajectory-efficient deviations. 

UC short description: Some airports' activation/deactivation of military airspace can induce deviations 

from the flight plan routes. In this sense, to optimize the lateral deviation of the flights due to 

avoidance of an eventual temporary military-activated area, an AI assistant can analyze and suggest a 

decision in sectorization and routing of the main flows in the FIR. Human operators, more specifically 

the ATC and FMP supervisors, will be supported by an AI assistant in determining how to configure 

airspace sectors best and optimize the routes for traffic flows in the en-route sectors of the FIR. The AI 

assistant will also act bidirectionally by allowing the human operator to nudge the AI-generated 

recommendations in more favorable/acceptable directions. The airspace sectorization and flow 

structures, as devised by the AI and nudged by the operators in the pre-tactical phase, will be used by 

the tactical ATCO to manage traffic around the military-activated areas. 

System description and role of the human operator: An AI-based system highly automates the 

airspace design for capacity and flow management for operational scenarios. This system 

automatically observes data from all relevant ATM platforms, predicts how to organize the airspace 

regarding routings and sectorization, and implements results as recommendations to the human 

operator (e.g., ATC and FMP supervisors). The AI system can be considered a new tool that is 

supervised and evaluated by a human expert. The AI system communicates its decisions on an auxiliary 

display that, for example, visualizes airspace configurations on a map-like interface. The role of the 

human operator (here, the ATC and FMP supervisors) is to evaluate the AI-based recommendations by 

requesting additional information or explanations, accepting or rejecting advisories, and nudging AI 

decisions in a different direction through manual interventions. All decisions and interactions will be 

logged, allowing the AI system to continuously learn from human preferences.   

Key benefits and impact of AI: Facilitate continuing growth of air traffic demand while maintaining 

high safety. Improve a key performance environment indicator based on actual trajectory, measuring 

the average en-route additional distance concerning the great circle distance. 

2.2.2 CROSS-DOMAIN ASPECTS 

Table 1 presents a summary of the main characteristics of the real environment/problem associated 

with the UCs. This table shows common features of the environments and decision processes in the 

three domains, the most notable being very large observation and action spaces, mixed action types 

(discrete and continuous), sequential decision processes, stochastic environments with a strong 

dependency on weather conditions, and the AI system shall address unplanned events.  

The relevant definitions and nomenclature1 for this table are the following:  

• Fully observable or partially observable: When an agent can perceive all relevant information 

to make decisions at any time, it is said to be fully observable. Otherwise, it is partially 

observable. 

 
1 Based on: https://www.geeksforgeeks.org/types-of-environments-in-ai/ (accessed on June 2024) 

https://www.geeksforgeeks.org/types-of-environments-in-ai/


AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

30 

• Episodic or sequential: In an episodic task environment, the agent’s actions are divided into 

atomic incidents or episodes. There is no dependency between current and previous incidents. 

In each incident, an agent receives input from the environment and performs the 

corresponding action. In a sequential environment, the previous decisions can affect all future 

decisions. The agent’s next action depends on what action it has taken previously and what 

action it is supposed to take in the future. 

• Deterministic or stochastic: A deterministic system is one in which the outcomes are precisely 

determined through known relationships among the states and events, without any 

randomness. A stochastic system is one where the process's randomness and unpredictability 

are inherent. In such systems, outcomes are influenced by random variables and probabilities. 

Feature Power grid Railway ATM 

Observation 

space 

▪ Partially observable 

▪ Real-time data update 

▪ Very large size, e.g., a 

network with around 100 

nodes has more than 

4,000 dimensions 

For instance, RTE’s grid is 

composed of more than 25 

000 nodes and 10 000 

lines. 

▪ Partially observable with 

limitations due to the 

unpredictable duration of 

delays and malfunctions 

▪ Real-time data update 

▪ Very large size, e.g., > 

10,000 trains (per day), > 

32,000 signals, > 14,000 

switches in the Swiss rail 

network 

▪ Partially observable 

▪ Real-time data update 

▪ Very large size, e.g., > 

2000 flights per day, > 10 

observable states per 

flight, > 8 en-route 

sectors, > 20 coordination 

points per sector   

Action Space 

▪ Mixed actions: discrete & 

continuous 

▪ Very large size: e.g., for a 

network with around 100 

nodes, it has > 65,000 

different discrete actions 

& > 200 continuous 

actions  

For instance, RTE’s grid is 

composed of more than 25 

000 nodes and 10 000 

lines. 

▪ Time horizon: intraday, 

meaning not more than a 

24-hour forecast period 

▪ Mixed actions: discrete & 

continuous 

▪ Very large size: While the 

solution space grows 

exponentially, the action 

space grows linearly with 

the number of trains 

▪ Time horizon: typically 

from a few minutes to a 

couple of hours 

▪ Mixed actions: discrete & 

continuous 

▪ The action space of the 

human ATC staff manager 

is limited by the number 

of available sectors to 

choose from and depends 

on ATCO staff availability 

and the number of flights 

in the sector 

▪ Time horizon: range 

typically from a few 

minutes to a couple of 

hours (= pre-tactical 

operations) 

Type of task Sequential Sequential Sequential 

Source of 

uncertainty 

Stochastic: weather-driven 

(e.g., load consumption and 

renewable energy 

generation), unplanned 

outages, missing or 

erroneous data. 

Stochastic: weather-driven 

(e.g., the friction of wheels 

on rails), travel demand, 

disruptions (e.g., 

locomotives or another 

rolling stock issue), sensors, 

and communication level. 

Stochastic: weather-driven, 

variability in traffic load, 

unpredicted ATCO staff 

shortage, variability in 

opening and closing military 

areas 
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Feature Power grid Railway ATM 

Environment 

model 

availability 

Physical laws of the 

electrical grid 

Although a good 

approximation of it can be 

achieved as the basic laws 

of physics are defined and 

clear, a model of the 

environment will be 

simplified in general 

Aircraft performance 

models, International 

Standard Atmosphere 

TABLE 1 – CHARACTERISTICS OF THE ENVIRONMENT ASSOCIATED WITH THE USE CASES 

Regarding functional requirements in the UCs, the cross-cutting aspects described below should be 

emphasized. 

The AI-based systems raise alerts based on their confidence level, reflecting the AI’s certainty, to 

ensure timely human intervention. The systems manage the alert frequency and avoid alert overload 

to prevent operator fatigue and maintain focus. These systems also allow for human override. For 

instance, in UC1.Railway, which involves automated train rescheduling, the human supervisor can 

decide when to switch off the AI system and take control. They can also use AI confidence levels to re-

configure or adjust operational settings. Information about epistemic uncertainty can identify states 

worth exploring to understand the environment better or detect out-of-distribution environments 

(Charpentier et al., 2022). 

By providing this additional layer of information, the AI helps human operators and supervisors make 

more informed decisions. This functional requirement aligns with the AI Act2, Article 14, “Human 

oversight”, in particular, “to decide, in any particular situation, not to use the high-risk AI system or to 

otherwise disregard, override or reverse the output of the high-risk AI system”, and “to intervene in 

the operation of the high-risk AI system or interrupt the system through a ‘stop’ button or a similar 

procedure that allows the system to come to a halt in a safe state”. 

The co-learning process between humans and AI enables humans to a) request additional information 

and explanations, accept or reject advisories, and influence AI decisions through manual interventions, 

and b) log all decisions and interactions, allowing the AI system to continuously learn from human 

preferences. In this collaborative setting, humans can also formulate hypotheses, with the AI system 

providing evidence for and against these hypotheses. This functional requirement is common across 

the three domains. It maintains human involvement by creating a feedback loop, ensuring that 

potentially biased outputs are addressed with appropriate mitigation measures, as Article 15 of the AI 

Act mentions. This approach is especially relevant in situations with incomplete information or new 

contexts, where the AI adapts its solutions based on human feedback or where humans provide 

specific missing information to help the AI forecast system states and assess action recommendations. 

The AI system should be capable of providing recommendations and decisions to support the real-time 

operation of network infrastructures. It should integrate information and forecasted conditions to 

enable corrective and preventive actions at various levels of automation (Nylin et al., 2022). This allows 

for adjustments to the automation settings of the AI system, with the human operator's role ranging 

from manually implementing actions while being supported and advised by the AI system to revising 

 
2 https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf 

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138_EN.pdf


AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

32 

AI-implemented plans. In the power grid domain, the focus is primarily on manual actions performed 

by humans (that follow a common human-AI system decision process). In contrast, in the railway and 

ATM domains, higher levels of automation are considered for certain UCs. 

Lastly, all the domains have a network structure that can provide constraints on solutions but also help 

inform solution strategies. 

2.2.3 SYSTEM THREATS AND VULNERABILITIES 

The three domains are susceptible to disruptions caused by unexpected events like extreme weather, 

technical failures, or even human resource limitations such as staffing shortages in the ATM domain. 

Reliable data is essential for effective decision-making, and issues like communication noise in railway 

systems or forecast errors in power grids can negatively impact operations.  

Security threats, which include malicious actors and adversarial data attacks, and progressive deviation 

of environment, are a concern for both railway and power grids, where malicious actors could target 

the AI system to cause delays or malfunctions. To adapt to evolving environments with changing 

regulations, human behavior, and operational realities, all three domains require regular updates to 

ensure that AI-based systems remain effective.  

Table 2 presents a summary of the system threats and vulnerabilities; a more detailed description can 

be found in Annex 2. 

Feature Power grid Railway ATM 

Trust from 

operators 

Introduce a negative 

cognitive bias in humans 

due to imperfect AI 

performance; accountability 

of decisions 

Introduce a negative 

cognitive bias in humans 

due to imperfect AI 

performance; accountability 

of decisions 

Introduce a negative 

cognitive bias in humans 

due to imperfect AI 

performance; accountability 

of decisions 

Unexpected 

events 

Weather, impact of planned 

maintenance, equipment 

failures, cyber-attacks 

Weather, emergencies, 

staffing shortages 

Weather events, flight 

emergencies, unscheduled 

ATC personnel shortages 

Data quality 
Communication/sensor 

noise, forecast errors 

Delays; scattered 

information 

Information scattered over 

various ATM systems; 

delayed and uncertain 

information 

Security 

Disruption or manipulation 

of the AI system, e.g., input 

(observation) data 

Privacy and data protection; 

understanding failure 

modes, and resilience to 

adversarial attacks 

Integrity and confidentiality 

of sensitive operational 

data; adversarial data 

attacks 

Progressive 

environment 

change 

System conditions evolve, 

but also the operational 

rules, the human operators’ 

behavior, or regulations 

Shift in skills for human 

operators; system 

conditions evolve, and 

operational rules 

AI needs regular updates to 

adapt to changing 

conditions 
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Feature Power grid Railway ATM 

Mismatch 

between 

training & 

deployment 

Ineffective control actions 

to solve congestion 

problems; expensive control 

actions and excessive 

curtailment of renewables  

Decrease in the 

trustworthiness of the 

railway operator; introduce 

inequality in service quality 

for different geographic 

regions 

Inaccurate assumptions 

about real-world conditions; 

updated information 

deviates from the 

information/data used for 

the implemented sector 

plan 

TABLE 2 – SUMMARY OF THE SYSTEM THREATS AND VULNERABILITIES RELATED TO THE USE CASES 

2.2.4 SOCIETAL CONCERNS 

Safety is a major focus for all three sectors. Power grids have additional concerns around integrating 

renewable energy sources and maintaining resilience against extreme events and cyberattacks. Public 

trust, data privacy, and clear accountability are key concerns for AI for the three sectors, and all face 

potential job displacement anxieties due to automation. Table 3 presents a summary of the societal 

concerns; a more detailed description can be found in Annex 2. 

Feature Power grid Railway ATM 

Main driver(s) 

Enable higher integration 

levels of renewable energy 

and decarbonization of 

the economy while 

maintaining (or improving) 

the reliability and 

resilience 

Traffic density on the 

European rail networks is 

constantly increasing; 

densely planned schedules 

are disturbed by unexpected 

events (e.g., infrastructure 

defects, delays). 

Maintaining safe and 

efficient ATM under 

increased traffic loads while 

adhering to the workload 

capacity limits of tactical 

ATCOs 

Privacy & data 

protection 

Data storage, processing, 

security 

Data storage, processing, 

security (GDPR compliance) 

Secure handling, storage, 

and processing of sensitive 

information  

Transparency & 

accountability 

Human operators shall be 

able to understand the 

ground basis of AI action 

recommendations 

Concerns about AI decision-

making and accountability 

for failures 

Explainability of AI 

recommendations, operator 

oversight 

Employment & 

skill shift 

Human operator’s sole 

ability to operate the grid 

and associated knowledge 

shall not be hampered by 

the AI system 

Potential job displacement 

and the need for staff 

reskilling  

Job displacement and the 

need for reskilling of ATC 

staff 

Public trust & 

acceptance 

External supervision and 

regulator conformity 

assessment are present 

Risk of severe traffic 

congestion with significant 

economic effects on the 

network in case of a 

malfunctioning AI 

Apprehensions and 

resistance from the public 

regarding the shift to AI-

driven systems 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

34 

Feature Power grid Railway ATM 

Safety & 

security 

Failure modes, model 

robustness, preventing 

adversarial attacks; 

avoiding propagation to 

other critical 

infrastructures 

Maintain robust data 

protection and 

cybersecurity measures 

System performance under 

extreme events, 

cybersecurity concerns 

Inequality 
Risk of unequal service 

quality due to AI bias 

Inequality in service quality 

for different geographic 

regions or categories of 

passengers 

Disparities in service quality 

(potentially favoring certain 

airspaces, airlines, or 

regions over others) 

TABLE 3 – SUMMARY OF SOCIETAL CONCERNS ABOUT THE USE CASES 

2.2.5 STANDARDIZATION OPPORTUNITIES 

Standardization in AI for critical infrastructures is fundamental to ensure reliable and secure 

implementation of AI-based decision systems, enhancing interoperability while mitigating risks and 

safeguarding essential services and legacy systems. While contributions to standards are beyond the 

scope of the AI4REALNET project, the use case descriptions also serve as a tool to standardize 

processes and identify potential standardization opportunities. Therefore, this subsection summarizes 

relevant existing standards and opportunities identified in the use case descriptions of Annex 2. 

The following existing standards were considered relevant for the use cases across all three domains:  

• ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. All UCs involve high-stakes tasks, and thus, risk management specifically related 

to AI is fundamental. This standard describes the principles applied to AI, risk management 

framework, and processes. 

• ISO/IEC 38507:2022, Information technology — Governance of IT — Governance implications 

of the use of artificial intelligence by organizations. AI assistants, co-learning systems, and fully 

autonomous AI require an analysis of the governance implications associated with their use. 

This includes studying data-driven problem-solving and adaptive AI systems, such as retraining 

during the operational phase, to adapt to new operating conditions and/or human feedback, 

culture, and values about stakeholders, markets, and regulation. 

• ISO/IEC 42001:2023, Information technology – Artificial intelligence – Management system. 

For organizations, it sets out a structured way to manage risks and opportunities associated 

with AI, balancing innovation with governance. 

• IEEE 7000-2021, IEEE Standard Model Process for Addressing Ethical Concerns during System 

Design. Defines a framework for organizations to embed ethical considerations in concept 

exploration and development. It promotes collaboration between key stakeholders and 

ensures ethical values are traceable throughout the design process, impacting the operational 

concept, value propositions, and risk management. 

Relevant standards and standardization requirements in the power grid domain 

As highlighted in an ENTSO-E report (ENTSO-E, 2019), additional interoperability and standards are 

crucial for the cyber-physical system supporting the energy transition. This need has become even 
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more urgent due to the AI Act requirements for the energy sector. This will further require intensifying 

the standardization activities in AI safety and liability toward a standard definition of AI compliance 

requirements, test protocols, and accountability (Heymann et al., 2023).   

One requirement identified in the power grid UCs is the application of an ontology that leverages 

agent-oriented AI recommendations to aid power grid operators in solving future problems based on 

past observations stored in a knowledge database. The French project Cockpit and Bidirectional 

Assistant (CAB)initiated the first work in this direction (Amdouni et al., 2023). Note that in other 

domains of the energy sector, a good example of the use of ontologies is the Smart Applications 

REFerence (SAREF) ontology, a family of standards that enables interoperability between solutions 

from different providers and among various activity sectors on the Internet of Things and therefore 

contributes to the development of the global digital market. A similar initiative should be promoted 

for AI assistants.  

Another emerging trend, already aligned with standardization initiatives like ISO/IEC 24029-2:2023, is 

formal verification methods for artificial neural networks (Venzke and Chatzivasileiadis, 2021). These 

methods can help estimate the operating boundaries of AI systems and provide mathematical 

guarantees, which are crucial for their deployment in critical applications. However, these standards 

should go beyond artificial neural networks and consider other AI models, as well as the 

communication of this information to the end-user/decision-maker and the interaction between AI 

and the environment. 

The Testing and Experimentation Facilities from Horizon Europe for the energy domain will play an 

important role in the standardization of conformal verification methods and in AI testing across the 

technology readiness level chain (Cremer et al., 2024).  

Relevant standards and standardization requirements in the railway network domain 

In railways, there are different levels of automation (Grade of Automation, GoA) defined in the IEC 

62267 Standard (Railway applications - Automated urban guided transport (AUGT) - Safety 

requirements). This standard covers high-level safety requirements applicable to automated urban 

guided transport systems, with driverless or unattended self-propelled trains operating on an exclusive 

guideway. Furthermore, standard DIN EN 50126, Railway Applications – The Specification and 

Demonstration of Reliability, Availability, Maintainability and Safety (RAMS), considers the generic 

aspects of the RAMS life cycle and describes a safety management process. It provides guidelines for 

defining requirements, conducting analyses, and demonstrating the reliability, availability, 

maintainability, and safety aspects throughout the lifecycle of railway applications. Another standard 

is DIN EN 50128, Railway applications – Communication, signaling and processing systems, which 

outlines the procedural and technical criteria for crafting software intended for programmable 

electronic systems in railway control and protection applications. A detailed review of standards and 

AI for railway operations can be found in (Gesmann-Nuissl & Kunitz, 2022). This establishes that an 

important standardization requirement is related to AI safety requirements. 

Moreover, in the AI4REALNET use cases, there are opportunities for co-decision-making and human-

computer interaction. These include standardizing bidirectional communication in the decision-making 

process, allowing humans to use the system as a decision-support tool, and providing additional 

context and feedback to the AI to enhance decision-making. 
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Relevant standards and standardization requirements in the ATM domain 

In the ATM domain, the ICAO DOC 4444 (Procedures for Air Navigation Services – Air Traffic 

Management) is an essential document published by the International Civil Aviation Organization 

(ICAO) since it details the standardized procedures necessary to ensure safe, efficient, and orderly air 

traffic operations. Given the dynamic nature of the aviation industry, it undergoes regular updates and 

revisions to incorporate technological advancements, operational experiences, and emerging best 

practices. ICAO DOC 4444 is evolving to accommodate AI-based systems3.  

In the AI4REALNET UCs, a key standardization objective is to define a uniform set of KPIs to assess the 

effectiveness of AI-driven sectorization systems, comparing their performance (e.g., robustness, 

human-acceptance) with heuristic methods in prediction and planning systems. This requires 

implementing standardized test procedures for evaluating AI performance, with existing procedures 

serving as foundational benchmarks.  

2.3 KEY PERFORMANCE INDICATORS 

Using the methodology described in 2.1.6Section 2.1.6, a set of potential KPIs were identified for each 

use case and are listed in Table 4 in terms of definition and calculation methodology. The list of KPIs 

and calculation methodology will be refined in deliverable D4.1 (WP4) considering what can be 

computed with the project’s digital environments.  

Use Cases ID KPI name Definition Calculation methodology 

UC1.Power Grid 

UC2.Power Grid 
Operation score 

The operation score for 

operating a power grid 

includes the cost of a 

blackout4, the cost of energy 

losses on the grid5, and the 

cost of remedial actions6. 

To simplify the computation and without 

hindering future improvements, it is 

proposed to define it as a vector with 

dimensions representing different units, at 

least: 

• Number of real-time topological actions 

(e.g., switching actions). Only unitary 

actions at each timestep are considered, 

meaning a tuple action would be 

counted as two separate actions. 

• Number of redispatching actions 

(including but not limited to storage) 

• Sum of redispatched energy volumes 

• Number of curtailment actions 

• Sum of curtailed energy volumes 

• Electricity losses 

Further details about operation score 

calculation will be defined in deliverable 

D4.1. This score could, for example, be 

 
3 European Plan for Aviation Safety 2022 – 2026: https://www.easa.europa.eu/en/document-library/general-publications/european-plan-aviation-safety-2022-
2026 

4 Calculated by multiplying the remaining electricity to be supplied by the market price of electricity. 

5 determined by multiplying the energy volume lost due to the Joule effect by the market price of electricity. 

6 the sum of expenses incurred by the actions using flexibilities (e.g. balancing products, curtailment or redispatching), based on the energy volume and underlying 
flexibility cost. 

https://www.easa.europa.eu/en/document-library/general-publications/european-plan-aviation-safety-2022-2026
https://www.easa.europa.eu/en/document-library/general-publications/european-plan-aviation-safety-2022-2026
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Use Cases ID KPI name Definition Calculation methodology 

completed with more financial aspects, such 

as immediate or long-term costs (e.g., 

indirect costs due to the lifetime decay of 

circuit breakers).  

UC1.Power Grid 

UC2.Power Grid 

Network 

utilization 

It is based on the relative line 

loads of the network, 

indicating to what extent the 

network and its components 

are utilized 

This can be quantified by: 

• For each timestamp, the highest 

encountered N-1 line’s load and N line’s 

load 

• The average of the maximum N-1 line’s 

load and N line’s load 

• For each timestamp, the number of lines 

where the N-1 line’s load is greater than 

a given threshold (e.g., 1.0) 

• For each timestamp, the number of lines 

where the N line’s load is greater than a 

given threshold (e.g., 0.9)  

• For all timestamps, the energy of 

overloads, calculated as the power 

exceeding the line capacity, integrated 

over the concerned timestamps (in N 

and N-1 state) 

UC1.Power Grid 

UC2.Power Grid 

Topological action 

complexity 

It gives insights into how many 

topological actions are 

utilized: performing too 

complex or too many topology 

actions can indeed navigate 

the grid into topologies that 

are either unknown or hard to 

recover from for operators. 

Metrics for quantifying the topological 

utilization of the grid: 

• The average number of split substations 

(gives an indication of the distance to 

the reference topology) 

• The average number of substations 

modified in one timestamp (gives an 

indication of the complexity of the 

topological actions)  

• Number of unique split substations 

UC1.Power Grid 
Assistant alert 

accuracy 

It is based on the number of 

times the AI assistant agent is 

right about forecasted issues 

(e.g., overloads) ahead of 

time. 

Confusion matrix calculated to show: 

• True positive cases: forecast alerts 

were raised by the AI assistant, and the 

problem did occur on the transmission 

grid 

• False positive cases: forecast alerts 

were raised by the AI assistant, but no 

problem occurred on the transmission 

grid 

• False negative cases: The AI assistant 

raised no forecast alert, but problems 

occurred on the transmission grid 

UC1.Power Grid 

UC2.Power Grid 

UC2.Railway 

Assistant 

relevance 

Power Grid: It is based on an 

evaluation by the human 

operator of the relevance of 

action recommendations 

provided by the AI assistant. 

Measured by the number of 

recommendations from the AI assistant 

effectively used by the human operator. It 

has a range of [0, 100] where: 
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Use Cases ID KPI name Definition Calculation methodology 

 

Railway: Situation awareness 

of the human operator using 

the system. 

• 0 means that no action 

recommendation from the AI assistant 

was considered useful by the human 

operator 

• 100 means that all action 

recommendations from the AI assistant 

were considered useful by the human 

operator 

The KPI can have values between 0 and 100 

if only a part of the action recommendations 

from the AI assistant were used by the 

human operator.  

The KPI shall distinguish between the “best 

decision given the information available at 

the time” and the “best decision in 

hindsight.” The evaluation shall focus on the 

first case, i.e., it shall not be done after the 

facts with full knowledge of the human 

operator, which was unavailable at the time. 

UC1.Power Grid 

UC2.Power Grid 

Action 

recommendation 

selectivity 

This KPI measures how 

recommended actions from 

AI assistants contrast among 

KPIs used for human 

decisions: this allows us to 

put recommended actions in 

perspective with trade-offs 

used in human decisions. 

For each recommended action from the AI 

assistant, this KPIs consists of calculating the 

increase of each of the following KPIs (see 

above) due to action implementation: 

• Network utilization 

• Topological action complexity 

• Operation score 

UC1.Power Grid 

UC2.Power Grid 

Assistant 

disturbance 

It aims to measure if the AI 

assistant's notifications are 

disturbing the human 

operator's activity. 

For each notification, the score has a range 

of [0, 5] where:  

• 0 means that the notification was not 

considered disturbing at all by the 

human operator 

• 5 means that the human operator 

considered the notification as fully 

disturbing 

UC1.Power Grid 

UC2.Power Grid 
Workload 

It is based on the workload 

assessment of human 

operators of the AI assistant. 

It shall be determined according to the 

NASA-TLX7 methodology or similar8. 

UC1.Power Grid 

UC2.Power Grid 

Total decision 

time 

It is based on the overall time 

needed to decide, thus 

including the respective time 

taken by the AI assistant and 

human operator. 

This KPI can be detailed to specifically 

distinguish the time needed by the AI 

assistant to provide a recommendation. 

 
7 https://humansystems.arc.nasa.gov/groups/tlx/index.php 

8 See more recent works about design recommendations to create algorithms with a positive human-agent interaction and foster a pleasant user-experience: 
http://hdl.handle.net/1853/61232  

https://humansystems.arc.nasa.gov/groups/tlx/index.php
http://hdl.handle.net/1853/61232
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Use Cases ID KPI name Definition Calculation methodology 

UC1.Power Grid 

UC2.Power Grid 
Carbon intensity 

It is based on the overall 

carbon intensity of the action 

recommendation 

Calculated as follows: 

• The amount of energy curtailed (or 

decreased following redispatching 

action) is split according to generation 

type with a negative sign 

• The amount of additional energy 

yielded by redispatching action is split 

according to generation type with a 

positive sign 

• The netted amount of energy Ei (MWh) 

is calculated per generation type i 

• Each amount Ei is multiplied by the 

corresponding emission factor 

(kgCO2/MWh) Fi 

• The score is then calculated as: 

∑ 𝐸𝑖 × 𝐹𝑖𝑖

∑ 𝐸𝑖𝑖
 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Trust towards the 

AI tool 

“(Dis)trust is defined here as a 

sentiment resulting from 

knowledge, beliefs, emotions, 

and other elements derived 

from lived or transmitted 

experience, which generates 

positive or negative 

expectations concerning the 

reactions of a system and the 

interaction with it (whether it 

is a question of another 

human being, an organization 

or a technology)” (Cahour & 

Forzy, 2009, p. 1261). 

The human operators' trust towards the AI 

tool can be measured using the Scale for XAI 

(Hoffman et al., 2018) or similar. 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Human motivation 

“Intrinsic motivation is 

defined as doing an activity 

for its inherent satisfaction 

rather than for some 

separable consequence. 

When intrinsically motivated, 

a person is moved to act for 

the fun or challenge entailed 

rather than because of 

external products, pressures, 

or rewards” (Ryan & Deci, 

2000, p. 54). 

The human operators' perceived internal 

work motivation can be measured by using 

the Job Diagnostic Survey (Hackman & 

Oldham, 1974) or a similar method. The 

questionnaire must be adapted to the AI 

context (e.g., problem detection with AI 

assistance). 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Human 

control/autonomy 

over the process 

“Autonomy is the degree to 

which the job provides 

substantial freedom, 

independence, and discretion 

to the employee in scheduling 

the work and in determining 

The control/autonomy of the human 

operator over the process must actually be 

given. This can be measured indirectly using 

the Work Design Questionnaire (Morgeson 

& Humphrey, 2006) or similar. The 

questionnaire must be adapted to the AI 
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Use Cases ID KPI name Definition Calculation methodology 

the procedures to be used in 

carrying it out” (Hackman & 

Oldham, 1975, p. 162). It 

consists of three interrelated 

aspects centered on freedom 

in decision-making, work 

methods, and work 

scheduling (Morgeson & 

Humphrey, 2006). Parker and 

Grote (2022) view job 

autonomy interchangeably 

with job control. 

context (e.g., problem detection with AI 

assistance). 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Human learning 

Human learning is a complex 

process that leads to lasting 

changes in humans, 

influencing their perceptions 

of the world and their 

interactions with it across 

physical, psychological, and 

social dimensions. It is 

fundamentally shaped by the 

ongoing, interactive 

relationship between the 

learner's characteristics and 

the learning content, all 

situated within the specific 

environmental context of 

time and place and the 

continuity over time. 

The human operators' perceived learning 

opportunities working with the AI-based 

system can be measured using the task-

based workplace learning scale (Nikolova et 

al., 2014) or a similar method. The 

questionnaire needs to be adapted to the AI 

context. 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Decision support 

for the human 

operator 

Decision support tools should 

be aligned with the cognitive 

decision-making process that 

people use when making 

judgments and decisions in 

the real world and ensure 

that the human operator 

retains agency (Miller, 2023). 

Therefore, AI decision support 

tools should help people 

remain actively involved in 

the decision-making process 

(e.g., by helping them critique 

their own ideas) (Miller, 

2023). 

The decision support for the human 

operator can be measured based on the 

criteria for good decision support (Miller, 

2023) or similar. The instrument must be 

further developed. 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Ability to 

anticipate 

The ability to anticipate. 

Knowing what to expect, or 

being able to anticipate 

developments further into the 

future, such as potential 

The human operator’s ability to anticipate 

further into the future can be measured by 

calculating the ratio of (proactively) 

prevented deviations to actual deviations. In 

addition, the extent to which the 
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Use Cases ID KPI name Definition Calculation methodology 

disruptions, novel demands or 

constraints, new 

opportunities, or changing 

operating conditions 

(Hollnagel, 2015, p. 4). 

anticipatory sensemaking process of the 

human operator is supported by AI-based 

assistants can be measured using the Rigor-

Metric for Sensemaking (Zelik et al., 2010) or 

similar. The instrument needs to be further 

developed and adapted to the AI context. 

UC1.Power Grid 

UC2.Power Grid 

UC1.Railway 

UC2.Railway 

Situation 

awareness 

“Situation Awareness is the 

perception of the elements in 

the environment within a 

volume of time and space, the 

comprehension of their 

meaning, and the projection 

of their status in the near 

future” (Endsley, 1988, p. 12). 

The human operator’s situation awareness 

can be measured using the Situation 

Awareness Global Assessment Technique 

(SAGAT) (Endsley, 1988) or similar. 

UC2.Power Grid 

Technical 

robustness to real-

world 

imperfections 

Describes the ability of the AI 

system to maintain its 

performance level under 

natural or adversarial 

perturbations, namely bad or 

low-quality data, or when 

recommended action does 

not have the expected impact 

on the transmission grid’s 

state 

This KPI can be quantified by comparing the 

technical performance of the AI assistant 

without and with the perturbations, using 

KPIs from UC1.Power Grid. From those KPIs, 

the following metrics (or properties) can be 

computed: 1) The extent to which the 

output of the AI system or a specific KPI 

(e.g., operation score) varies with the 

perturbations, e.g., measured with the 

output/KPI variance and/or average 

difference. 2) Assess whether a particular 

decision holds for input variation (data 

quality issue) in the same context. During 

the training time of the AI assistant, the 

slope of the reward/loss function 

deterioration can also be used to measure 

technical robustness. 

UC2.Power Grid 

Resilience to real-

world 

imperfections 

Ability to prepare for and 

adapt to changing conditions 

and withstand and recover (to 

a “normal” state) rapidly from 

natural or adversarial 

perturbations or unexpected 

changes. 

This KPI can be quantified with the 

magnitude and/or duration of reward/loss 

function performance degradation 

compared to an unperturbed system for the 

same context. It can, for instance, be 

measured by the area between the reward 

curves of the unperturbed and perturbed AI 

system. This can be computed during 

training or operational testing time. 

UC2.Power Grid 

Transferability 

across fidelity 

levels 

Measures how effectively a 

policy or model trained in one 

environment (low-fidelity 

simulation) performs when 

applied to different 

environments (e.g., high-

fidelity simulation or real-

world operation).  

Evaluated by directly applying the policy 

trained in a low-fidelity simulation to a high-

fidelity simulation and measuring its 

effectiveness by computing the KPIs from 

UC1.Power Grid. 
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Use Cases ID KPI name Definition Calculation methodology 

UC2.Power Grid 

Generalization to 

different grid 

operating 

conditions 

The ability of a policy to 

perform well in an unseen 

grid operating condition that 

was not part of the training 

experience.  

Tested by exposing the previously trained AI 

system to different environments with 

changed grid elements and observing how 

well it adapts and performs by determining 

the KPIs from UC1.Power Grid. 

UC2.Power Grid 
Assistant self-

awareness 

It is based on the number of 

times the AI assistant agent is 

right about its ability to 

perform action 

recommendations ahead of 

time. 

Confusion matrix calculated to show: 

• True positive cases: AI assistant raises 

inaccuracy alert indicating it has 

insufficient data to estimate the state 

of the grid and it actually does not have 

the required data 

• False positive cases: AI assistant raises 

inaccuracy alert indicating it has 

insufficient data to estimate the state 

of the grid, but it actually does have the 

required data (i.e., it should be 

confident, but it is not) 

• False negative cases: AI assistant does 

not raise inaccuracy alert, but in reality, 

it cannot properly assess the situation 

(i.e., is falsely confident) 

Note: This KPI is the adaptation of the 

“Assistant alert accuracy” KPI of UC1 “Power 

Grid Assistant” 

UC1.Railway 

UC1.ATM 

UC2.ATM 

Acceptance score 

Railway: Tracks the frequency 

of human operator 

interventions in AI decisions. 

Target: Reduce to less than 

x% of cases. 

 

ATM: Measure of acceptance 

degree of the generated AI 

solution for human operators  

Railway: (Number of human interventions / 

Total AI decision instances) x 100. 

 

ATM: Reflects the acceptance choice in the 

AI’s system decision.  

(0% - 100%). Measured directly from 

yes/no/revision input, translated into % 

across the operator’s multiple interactions 

with AI-generated solutions. 

UC2.Railway Acceptance 
Acceptance of the system by 

a human user. 

Using the TAM model (technology 

acceptance model).  

UC1.Railway 

UC2.Railway 
Punctuality 

UC1: Measures the 

percentage of trains arriving 

at their destinations on time. 

Target: Achieve a punctuality 

rate of x% or higher. 

UC2: An aggregated measure 

of the delay in a scenario 

(defaults to be defined).  

UC1: (Number of on-time arrivals / Total 

number of arrivals) x 100. 

 

UC2: Sum of individual train delays divided 

by number of trains. 

UC1.Railway 

UC2.Railway 
Response time 

UC1: Assesses the speed at 

which the AI system responds 

to disruptions or changes. 

Target: Response within x 

minutes of disruption 

detection. 

 

UC1: Average time taken from disruption 

detection to system response. 

 

UC2: Average time taken from disruption 

detection/prediction to suggestion of 

adjusted schedule(s). 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

43 

Use Cases ID KPI name Definition Calculation methodology 

UC2: The time needed to 

produce a new schedule in 

case of a disturbance event.  

UC1.Railway 
Delay reduction 

efficiency 

Quantifies the effectiveness 

of the system in reducing 

delays. Target: Reduce overall 

delays by 30%. 

(Total delay duration before AI 

implementation - Total delay duration after 

AI implementation) / Total delay duration 

before AI implementation. 

UC2.Railway 

Human 

information 

processing 

The volume of information 

that humans consider when 

making decisions with AI 

support (compared to making 

decisions with no AI support).  

It is measured indirectly from user 

interaction with the AI system through the 

user interface (e.g., eye-tracking, clicks, 

requests for information, ...) and via 

questionnaires answered by the human 

operator after use. 

UC2.Railway Comprehensibility 

It is defined as the ability to 

understand a decision logic 

within a model and, therefore, 

the ability to use this 

knowledge in practice (Futia 

and Vetrò, 2020).  

Comprehensibility is derived from 

questionnaires answered by the human 

operator after use. 

UC1.ATM 

UC2.ATM 
Agreement score 

Measures how much the 

supervisor agrees with AI-

generated sectorization. 

Note: agreement and 

acceptance are not the same. 

One can accept a solution but 

not necessarily agree with it. 

A good system fosters a high-

level agreement  

It is measured directly from user input using 

an agreement rating scale of 0 – 100%. 

UC1.ATM 

UC2.ATM 

Trust in AI 

solutions score 

How much of the operator's 

confidence in the AI-

generated solution, with and 

without the need for 

additional explanations.  

 It is measured directly from user input using 

Likert scales. 

UC1.ATM 

UC2.ATM 

Decision support 

satisfaction 

System effectiveness in 

supporting the efficient 

decision-making by airspace 

managers  

 It is measured directly from user input using 

Likert scales. 

UC1.ATM 

UC2.ATM 
Efficiency score 

How many times was an AI-

generated solution revised? A 

good system would minimize 

the number of human 

interventions.  

Reflects the efficiency of the combined 

human-AI team performance.  (0% - 100%).   

Measured directly from user input (was the 

solution modified? Yes/No), translated into 

% across the operator's multiple interactions 

with AI-generated solutions  

UC1.ATM 

UC2.ATM 

Significance of 

human revisions 

The extent of human revisions 

compared to the AI decision. 

Here, small, localized 

revisions (e.g., merging two 

small adjacent sectors in the 

northeast corner of the FIR) 

would be rated differently 

from larger or multiple 

Reflects the AI system performance. (LOW, 

MED, HIGH interaction %).  

Measured directly from user input (of the 

modified solutions, how much interaction 

was measured? LOW number and extent of 

changes, MEDIUM number, and extent of 

changes HIGH number and extent of 

changes), translated into % across the 
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Use Cases ID KPI name Definition Calculation methodology 

revisions across various areas 

in the FIR.   

operator's multiple interactions with AI-

generated solutions 

UC1.ATM 

UC2.ATM 
System reliability 

System trustworthiness - 

operation as expected under 

several conditions without 

major failures.  

Reflects the efficiency of the combined 

human-AI team performance. (0%-100%).  

Measured directly from how many times the 

AI-generated solutions are sound or lead to 

failures. 

UC1.ATM 

UC2.ATM 

AI prediction 

robustness 

Measure the robustness of 

the predicted sectorization 

considering small variations in 

factors such as time horizon 

or capacity. 

Reflects the efficiency of the combined 

human-AI team performance.   

 

Measured directly from the AI generated 

solutions, as the average of how big a 

variation in capacity has to be to cause the 

AI to revise its previous solutions.  

UC1.ATM 

UC2.ATM 

Prompt demand 

rate 

Assess how many times the 

ATCO prompts additional 

explanations from the AI-

generated solutions.  

Reflects the AI system performance. (LOW, 

MED, HIGH interaction %)  

 

Measured directly from user input (how 

much interaction with explanations occurred 

and how the generated scenario is rated 

using the 'dynamic density index', measuring 

complexity), translated into % across the 

operator's multiple interactions with AI-

generated solutions  

UC1.ATM 

UC2.ATM 

AI co-learning 

capability 

The capability of the AI 

system to adapt to human 

preferences as perceived by 

ATCOs. 

Measured directly from user input using 

Likert scales. 

UC1.ATM 

UC2.ATM 

Human response 

time 

Time needed to react to AI 

advisory/information  

(LOW, MED, HIGH response time %).  

Measured directly from user input (dismiss a 

window when they feel satisfied after 

evaluating a scenario, LOW less than 5 min, 

MEDIUM 5-10 min, HIGH more than 10 

minutes), translated into % across the 

operator's multiple interactions with AI-

generated solutions.  

UC2.ATM Reduction in delay 

Percentual reduction of flight 

delays due to AI 

implementation in airspace 

and air traffic management  

0% - 100%, calculated by the additional 

flown track miles (in combination with flown 

speed and altitude profiles) relative to the 

shortest great circle distance (and preferred 

speed and altitude profiles), resulting in a 

percentual flight time deviation. 

UC2.ATM 
Workload 

perception 

Assess ATCOs perception of 

the system's impact on their 

workload (either positive or 

negative)  

It is measured directly from user input using 

a 7-point Likert scale, where 1 is a huge 

increase in workload, and 7 is a huge 

decrease in workload. 

TABLE 4 – LIST OF KPIS PER USE CASE 
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2.4 ASSESSMENT LIST FOR TRUSTWORTHY ARTIFICIAL 

INTELLIGENCE (ALTAI) 

2.4.1 METHODOLOGY 

At this stage, AI4REALNET uses the ALTAI assessment tool to identify the relevant risks and ethical 

concerns and translate them to non-functional (and functional) requirements in the UCs, in alignment 

with the framework for trustworthy AI (TAI) established by the high-level expert group on artificial 

intelligence (AI HELG) appointed by the European Commission9. This framework is also the basis for 

the AI Act (Fedele et al., 2024). This process also allows us to evaluate the suitability of applying ALTAI 

at the early stages of development, identify limitations, and provide recommendations for its 

improvement. It also serves as a basis for establishing improved mechanisms for continuing the 

trustworthiness assessment during the rest of the project. 

Noteworthily, the ALTAI has been conceived as an assessment instrument for ex-post self-assessment 

of AI systems. Despite this fact, we proactively used its structure to perform an ex-ante assessment of 

the UC definition in accordance with the framework for TAI from the European Commission. This allows 

the consortium to  

• Identify risks and ethical issues particularly relevant to the considered UCs 

• Define UC requirements to be fulfilled by the solutions developed in the project 

• Develop suitable metrics to validate that these requirements are appropriate and sufficient to 

mitigate the identified risks and ethical concerns. 

It is important to note that, in complement to the analysis presented in this section, Section 3.3 of the 

conceptual framework establishes the foundation, from both epistemological and philosophical 

perspectives, for a non-calculative approach to AI risk assessment and suggests modifications to the 

application of ALTAI in safety-critical systems. 

2.4.1.1 BACKGROUND 

The ALTAI serves as a self-assessment checklist that aids developers in implementing key requirements 

according to the ethical dimensions raised therein. The ALTAI is structured in seven key ethical 

requirements: 

• Human agency and oversight 

• Technical robustness and safety 

• Privacy and data governance 

• Transparency 

• Diversity, non-discrimination, and fairness 

• Societal and environmental well-being 

• Accountability 

 
9 https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai 

https://digital-strategy.ec.europa.eu/en/policies/expert-group-ai
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Hereafter, we will refer to these requirements as ethical dimensions to avoid confusion with the UC’s 

requirements. The ALTAI provides a set of yes/no questions on each of these dimensions and their sub-

sections to guide the self-assessment. This way, it serves as a checklist to identify issues that have not 

been addressed and suggests their consideration. The overall ALTAI structure is depicted in Figure 3. 

 

FIGURE 3 – ALTAI STRUCTURE 

Hence, the ALTAI poses a post hoc assessment tool that identifies risks and ethical concerns. However, 

ALTAI does not provide: 

• Means to assess if the risks have been properly identified 

• Comprehensive guidance on how to address the identified risks 

• Validation of whether the measures taken are appropriate and sufficient to mitigate identified 

risks. 

There are several precedents of using ALTAI assessment for critical applications such as Advanced 

Driver-Assistance Systems (Borg et al., 2021), Air Traffic Controller Operations (Stefani et al., 2023) and 

considerations for safe autonomy of smart railways (De Donato et al., 2022). Further consideration of 

ALTAI is provided in (Radclyffe et al., 2023). 

2.4.1.2 EXTRACTING NON-FUNCTIONAL REQUIREMENTS 

Figure 4 illustrates the process followed to derive requirements from the ethical assessment for the 

AI4REALNET UCs.  
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FIGURE 4 – PROCESS FOLLOWED BY AI4REALNET TO DERIVE NON-FUNCTIONAL REQUIREMENTS FROM ALTAI 

Since each application domain has its own specific characteristics, individual assessments were 

pursued for the TSO, Rail, and ATM domains. The identification of requirements based on the ALTAI 

questionnaire followed the iterative development of the UCs (c.f. Section 2.1.3.1), 

The knowledge of the domain experts is key for identifying ethical concerns. Internal workshops were 

held with the consortium partners involved in each application domain to introduce the ALTAI 

structure and the methodology. In this workshop, a first analysis of the initial versions of the use case 

was performed to identify aspects relating to ALTAI dimensions. These originated from the 

stakeholders’ interests, which are bound to reflect some individuals’ interests (and thus relate to 

ethical concerns) or societal concerns. This step explicitly links requirements already identified in the 

UC to the ALTAI structure. 

After these workshops, the ALTAI questionnaire was provided as a shared document in which the 

workshop participants, stakeholders, developers, and all other parties involved in each UC provided 

answers to the individual questions. They add their insights, comments, and perspectives. One 

individual from the domain experts is designated to organize and manage this process. Based on these, 

for each question, a conscientious decision is made, which comprises: 

1. A decision: Is the issue raised by the ALTA question relevant, and must it be addressed in the 

UC? This decision and its supporting arguments must be recorded in the ALTAI document for 

the UC. 

2. If the issue is deemed relevant, the respective UC requirement(s) that address the issue are 

recorded and included in the Requirements section of the UC template – See Annex 1. 

The argumentation regarding the relevance of the ethical consideration recorded in point 2 serves to 

justify the ethical choices made for the AI4REALNET project. 

We report this decision in a table similar to (Stefani et al., 2023). Each row corresponds to an ethical 

issue, and the columns are “Question,” “Decision,” “Consideration,” and “Measure,” respectively. In 

the first column, the ALTAI question is provided, the second contains the decision decreed either 
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“Relevant (+)” or “Not Relevant (-)”, the third details the ethical considerations made, and the fourth 

lists the requirements that are in the UCs responding to the ethical considerations. The resulting tables 

for the three application domains can be found on the AI4REALNET website10. 

The summaries of findings in the text form are presented in subsections 2.4.2.1-2.4.2.3 (a more 

detailed summary is available in Annex 3). Each subsection starts with a figure showing the proportion 

of questions marked as relevant to the particular ALTAI requirement as an indicator of the ethical 

dimensions identified as most relevant for the development to be made by AI4REALNET for each UC. 

2.4.2 SUMMARY OF THE RELEVANT ALTAI REQUIREMENTS 

2.4.2.1 POWER GRID 

The ALTAI assessment of UC in the power grid domain showed the relevance of over 80% for 5 of 7 

ALTAI requirements (see Figure 5): accountability, human agency, and oversight, transparency, 

technical robustness and safety, diversity, non-discrimination, and fairness. 

 

FIGURE 5 – POWER GRID: RELEVANT ALTAI REQUIREMENTS 

REQUIREMENT #1: Human Agency and Oversight. AI assists human operators in managing power grids 

by providing recommendations, but human operators retain full control over decision-making. While 

over-reliance on AI could develop over time, alarms are built into the system when AI cannot make a 

recommendation, reducing the risk of blind trust. Operators are trained to understand the AI’s 

reasoning, such as RL, and the system can simulate the impact of recommendations to ensure the 

operator remains informed and in control. 

REQUIREMENT #2: Technical Robustness and Safety. AI systems for power grids must be resilient to 

attacks and data disruptions. Cyberattacks on input data, AI model outputs, and uncertainties in the 

model are risks. Robustness metrics are necessary to monitor these systems during both training and 

 
10 https://ai4realnet.eu/wp-content/uploads/2024/08/D1.1-ALTAI_Summary.pdf 
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operation. While safety threats like adversarial attacks or environmental risks may arise, AI outputs 

remain under human control, and inaccuracies will not cause catastrophic outcomes due to human 

oversight. Transfer learning allows the system to adapt to new environments, and continuous 

monitoring ensures that AI performance remains optimal. Stress tests will help verify the system’s 

ability to withstand input and model perturbations, ensuring reliability and reproducibility. 

REQUIREMENT #3: Privacy and Data Governance. The AI system does not handle personal data, so 

privacy concerns are minimal. Data used for training is anonymized, although operator actions may be 

traceable through timestamps. The project complies with GDPR requirements, ensuring secure and 

proper data handling. 

REQUIREMENT #4: Transparency. Transparency is crucial in AI systems for power grid operations. 

Transmission operators store historical records of events, ensuring that AI-based decisions can be 

traced and replayed. While the current AI methods focus on neural networks, feature importance and 

sensitivity analyses help improve explainability. Communication between the AI system and human 

operators includes alarms to inform operators of potential AI failures. Training programs are planned 

to help operators interact effectively with the AI system. 

REQUIREMENT #5: Diversity, Non-discrimination, and Fairness. The AI system must avoid unfair bias, 

ensuring it does not favor specific energy producers. Bias may arise from technical limitations of grid 

operations, but fairness in redispatching or curtailing certain users is essential. Comparing AI decisions 

with optimal power flow solutions ensures the least-cost outcomes. Stakeholders are involved in the 

AI design process, and competitions help evaluate the AI's effectiveness and fairness. 

REQUIREMENT #6: Societal and Environmental Well-being. AI systems are designed to prioritize 

carbon-free actions and reduce blackouts. They increase resilience to extreme weather events and aid 

in minimizing the carbon footprint of grid operations. While AI augments human analytical skills, it 

does not replace operators. Training programs will enhance operator understanding of AI, ensuring 

efficient collaboration between human and machine. 

REQUIREMENT #7: Accountability. Auditability is key for the AI system, especially in cases of outages 

or cyberattacks. Storing AI model data is crucial for tracing decisions. While audits are unlikely during 

development, high-risk system regulations, such as the AI Act, will require audits during the 

operational phase. Risk management systems, including third-party reporting of vulnerabilities, will be 

necessary to ensure the AI system’s safety and reliability. 

2.4.2.2 RAILWAY NETWORK 

For the railway network, a large proportion of questions in the questionnaire were considered relevant 

for the UCs but out of scope for the proof of concept (POC) that will be implemented during the 

AI4REALNET project. The POC is limited to be tested in the simulation environments and is 

concentrated on the technical feasibility of the functional requirements. Hence, many ethical 

dimensions will not be included for the first implementation due to the use in a controlled environment 

but are relevant at later stages. Figure 6 shows the relevant ALTAI requirements and plans for 

implementation in the AI4REALNET project (Railway PoC). The ALTAI questionnaire on the PoC yields 
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requirements on Human Agency and Oversight, Social and Environmental Well-Being, and 

Transparency. 

 

FIGURE 6 – RAILWAY: ALTAI REQUIREMENTS RELEVANT FOR POC PLANNED FOR AI4REALNET 

Additionally, we performed the ALTAI analysis to identify relevant non-functional requirements for the 

system's future real-world application.  

Figure 7 depicts how the number of identified relevant ethical dimensions for the system planned for 

the application in real-world scenarios increases in comparison to those of the PoC. The dashed line is 

equivalent to Figure 6 (Railway PoC). The solid line shows the proportion of relevant questions for the 

real-world applications, to assess the overall coverage of UCs by ALTAI questionnaires. The difference 

between the dotted line (PoC) and the full line (Full Railway UC) illustrates how some ethical 

requirements become relevant at later stages of development than the ones covered within the 

AI4REALNET scope. For the complete coverage of the UCs, requirements such as accountability, 

technical robustness and safety, privacy and data governance, and transparency have grown in 

importance. The considerations regarding each of the ALTAI requirements for Railway UCs are 

summarized below. 
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FIGURE 7 – RAILWAY: ALTAI REQUIREMENTS RELEVANT FOR POC AND EXTENDED VERSION FOR THE REAL-

LIFE APPLICATION 

REQUIREMENT #1: Human Agency and Oversight. The AI system interacts with human end-users, 

impacting their autonomy and decision-making. Overreliance on the system is a potential risk. 

Therefore, it is crucial that employees are trained to understand how they are using AI and how to use 

it properly. While the system doesn't simulate social interaction, it can still foster addictive behavior. 

In railway operations, human oversight varies from Human-in-the-Loop to Human-in-Command. 

Procedures must be established to safely revert control back to humans when the AI is the acting 

agent. Human oversight should include mechanisms for detecting adverse effects and controlling the 

system’s self-learning nature. 

REQUIREMENT #2: Technical Robustness and Safety. Though the project addresses some aspects of 

technical robustness and safety, more detailed considerations are necessary when these solutions are 

implemented. Since collision avoidance is handled separately, the AI system poses minimal risk to 

human safety. Resilience to attacks is considered, but certification and long-term security procedures 

fall outside the scope. Safety concerns such as system fault tolerance and technical review require 

human oversight during development. System accuracy is crucial, with performance monitoring 

included in the process. Reliability issues should be mitigated with mechanisms to transfer control back 

to humans and notify them of uncertain AI results. Continuous learning requires documentation and 

interpretability to ensure system reliability and human control. 

REQUIREMENT #3: Privacy and Data Governance. The AI system does not use private data, and privacy 

concerns are minimal in the scope of this project. Future mechanisms to address privacy concerns 

should be evaluated at later stages of development, although they are not immediately relevant here. 

Data governance complies with regulations, but GDPR-related measures are not necessary given the 

nature of the data used. 

REQUIREMENT #4: Transparency. Traceability is key, enabling historical event records to be replayed, 

which includes the AI model’s input and output data. Explainability ensures human operators 

understand the AI system’s goals, decision-making process, and learning mechanisms. Clear 
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communication between the AI system and human operators is vital to prevent misuse and build trust. 

The system is designed to clearly distinguish AI actions, ensuring that human operators are always 

aware of their interaction with AI and are informed about its capabilities and limitations. 

REQUIREMENT #5: Diversity, Non-discrimination, and Fairness. Avoiding bias during development is 

important, ensuring that the AI system fairly distributes delays and does not favor specific Railway 

Undertaking Operating Managers (RUOMs). Bias detection mechanisms may be developed in the 

future but are not within the project’s current scope. Stakeholder participation is integral to aligning 

the system with real-world needs, with workshops involving both stakeholders and the public 

informing the development process. 

REQUIREMENT #6: Societal and Environmental Well-being. The AI system could indirectly contribute 

to environmental well-being through improved efficiency. Its impact on work arrangements and skills 

is significant, and design considerations must address these changes. Workshops with end-users and 

human factors experts are recommended to guide development. While the system will require new 

skills, the creation of training courses is necessary but beyond the current project's scope. 

REQUIREMENT #7: Accountability. Auditability is ensured through documentation and logging, which 

are crucial for post-hoc analysis and performance evaluation. Although detailed risk management is 

not included in the proof-of-concept phase, documentation, and logging provide a foundation for 

internal AI ethics monitoring and accountability assessments in the future. 

2.4.2.3 AIR TRAFFIC MANAGEMENT 

The summary of the ALTAI questionnaire filled for the ATM UCs is in Figure 8. The requirement of 

transparency stands out clearly from the others. The focus on its constituents, traceability, 

explainability, and communication is shaped by the type of AI system described in use cases. For an AI 

assistant, transparency describes different aspects of the human-AI collaboration and can be used to 

facilitate the operator's successful use of AI system predictions. The productive cooperation between 

an operator and an AI system is based on reliable, understandable, and sufficient communication.    

 

FIGURE 8 – ATM: RELEVANT ALTAI REQUIREMENTS 
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REQUIREMENT #1: Human Agency and Oversight. The AI system operates as a recommender for 

human operators, and final decisions remain under their control. However, prolonged use of AI might 

reduce operator vigilance and over-reliance on AI-generated decisions. Currently, there is no risk of 

addiction or manipulation, but the shift from recommendation-based to fully automated decision-

making could affect human autonomy, necessitating stricter rules. As autonomy increases, the 

operator’s oversight decreases, moving toward a “management by exception” model where manual 

review is minimized. Alarms are triggered if the AI cannot generate a solution or if an environmental 

change affects the AI's recommendations, ensuring human intervention when necessary. 

REQUIREMENT #2: Technical Robustness and Safety. At higher automation levels, AI-generated 

decisions implemented without human confirmation may lead to dangerous situations, making 

resilience to attacks and system security essential. While the project aims to ensure stability and 

reliability, risk evaluation must guide the design of safety properties. Any updates to the AI model, 

particularly with online RL, must be logged and communicated to operators to prevent confusion. 

Though AI serves as a recommender, low accuracy in suggestions could still lead to adverse outcomes 

if human oversight falters. Metrics such as KPIs for system accuracy and reliability should be 

continuously monitored, and fallback plans should be in place, especially when transitioning to 

automatic implementation of decisions. 

REQUIREMENT #3: Privacy and Data Governance. No private data will be used during the system’s 

training or operation. However, personal data might be indirectly involved when calculating KPIs, 

which must be fully anonymized to protect individual identities while preserving the accuracy of 

performance metrics. 

REQUIREMENT #4: Transparency. AI system traceability is critical, and all human interventions and 

decisions should be logged. This includes documenting the input data used to generate decisions to 

ensure transparency. Explainability is a priority, with operators able to request explanations for AI 

decisions. Metrics like “Trust in AI solutions” and “Prompt demand rate” will measure operator 

confidence in AI-generated decisions and the effectiveness of explanations. Regular surveys can be 

implemented to assess human-system interaction and further improve AI system communication. 

REQUIREMENT #5: Diversity, Non-discrimination, and Fairness. No specific biases are anticipated in 

the current system, and the AI primarily serves human operators rather than impacting end-users 

directly. The introduction of AI into ATC could influence operator workloads, requiring new skills and 

possibly leading to concerns about job displacement. Stakeholder consultations during the design 

process will ensure that AI system benefits, risks, and limitations are understood, with feedback 

gathered through operator surveys for continuous improvement. 

REQUIREMENT #6: Societal and Environmental Well-being. The AI system is designed to reduce the 

workload on the air traffic system and decrease carbon emissions, contributing positively to 

environmental well-being. Metrics to measure carbon savings will be developed. The system also 

enhances human operator decision-making but requires proper training to mitigate concerns or 

resistance to changes in work methods. Operators must be educated on the fundamentals of AI to 

build trust and competence before the system's full implementation. 
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REQUIREMENT #7: Accountability. Auditability is crucial, with AI model weights, hyperparameters, 

structure, and input data being logged for future verification. Since RL algorithms update continuously, 

system states should be audited after each update to maintain accountability. The project will make 

model code publicly available for benchmarking, but operational deployment in real environments 

would require robust methodologies to ensure traceability and accountability for AI system decisions. 

2.4.3 RECOMMENDATIONS FOR IMPROVEMENT OF ALTAI 

Trustworthiness assessment is more efficient when it addresses issues relevant to each stage of the AI 

life cycle. ALTAI, being defined mainly as a tool for ex-post analysis, doesn’t reflect these nuances. We 

consider that the utility and efficacy of this tool can be improved by adapting it to allow its application 

throughout the entire AI Life Cycle. We present the recommendations below for extending ALTAI in 

this way.  

Complementarily, Section 3.3, presents additional analysis of ALTAI with respect to the epistemological 

and philosophical foundations of trustworthy AI and the concepts of risk and uncertainty. It also 

provides further suggestions for tailoring ALTAI to critical infrastructure applications. 

1- Create an alternative set of questions, directed to an early development stage that is aimed to 

highlight checkpoints to consider at respective stages.  

As ALTAI was developed as a post-hoc assessment, the formulation of questions relates to a final 

product. However, the assessment during the earlier stages is beneficial for introducing 

trustworthiness requirements at earlier development stages to reach trustworthiness by design and 

save development time of additional iterations.  

It can be compared to the Data Protection Impact Assessment, which is described in the General Data 

Protection Regulation, Article 3511, as “an assessment of the impact of the envisaged processing 

operations on the protection of personal data”. According to GDPR, this assessment must include a 

systematic description of processing operations, including the scope and nature of the processing and 

its functional description; measures applied to comply with regulations; the description of origins, 

nature, and severity of risks to the rights and freedoms of data subjects as well as “measures envisaged 

to treat those risks”. GDPR demands DPIA to be conducted “prior to processing” as a means to address 

any potential risks at an early stage. Additionally, it advises continuing assessment during the entire 

life cycle.  

This approach can also be adopted for the ALTAI: the trustworthiness assessment should be introduced 

as quickly as possible during the development process to identify and mitigate possible risks and 

reassess the system after any significant change. It is also advisable to ensure consistency with 

standards of frameworks for risk identification and management (e.g., ISO/IEC 23894:2023, 

Information technology — Artificial intelligence — Guidance on risk management). 

2- Optimize the assessment process.  

 
11 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of 
natural persons with regard to the processing of personal data and on the free movement of such data, and 
repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance).  
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The questionnaire offers a base for algorithm analysis; however, the way it is conducted can have a 

major influence on the result. The initial suggestion of HELG is to fill the assessment for a particular 

algorithm. We suggest the following methods to increase the benefits of the ALTAI questionnaire:  

Assessment by different groups of stakeholders with subsequent summarization of results. It is 

possible that depending on the role of the stakeholder, how frequently the user will be facing the 

algorithm, the role in the organizational processes, the perspective of the algorithm, and expectations 

from the outcome of its work are different, which shifts the perception of the importance of 

dimensions of trustworthiness.  

Assessment as a part of a co-design workshop. Such a workshop can help to establish the requirements 

for trustworthiness, engage users and stakeholders in an early development stage, and clarify the 

vision of the final product. In this case, ALTAI offers a solid base for discussion with a comprehensive 

list of topics. The Ethics Guidelines for Trustworthy AI also underline that ALTAI can be most valuable 

in active engagement with its questions.  

Regular assessment as a part of the testing procedure. As the algorithms evolve during their 

development and life cycle, the assessment should be repeated to ensure that the changes introduced 

in each next version do not sacrifice the established level of trustworthiness. Regular reassessments 

allow for identifying the changes in the AI system and adjusting the trustworthiness requirements if 

needed.  

3- Introduce a way to distinguish between unrelevant functionality and those that are currently not 

in the scope or are not planned. 

If the trustworthiness assessment is performed before the AI system is finalized, it is possible that some 

functionality mentioned in ALTAI has not been implemented or is not planned for development yet. 

For example, in AI4Realnet Use Cases from the ATM domain, some security and accountability features 

are not planned for the prototype but are planned for later implementation. The available answers for 

the ALTAI questions can be extended to cover these cases. 

Due to the specificity of the AI4Realnet project, which contains use cases from 3 different domains, 

we could observe that assessment in the early stages can be complicated by different understandings 

of the final product among different groups of stakeholders. In this case, it is hard to generate a robust 

result if the participants do not agree on the final product. The prerequisite to apply ALTAI at the earlier 

stages is the comprehensive overview of the future AI system agreed upon among all stakeholder 

groups.  

4- Find a way to homogenize the number of questions in different dimensions of ALTAI.  

The formulation of ALTAI questions influences the result of the assessment. Currently, the number of 

questions and subquestions differs a lot among ethical dimensions; some questions have 4-5 

subquestions, which are only slightly different from each other. The quantitative analysis of the ethical 

requirements shown in Figure 5-Figure 8 is influenced by these differences, as one topic can have 

different contributions to the proportion depending on the overall number of questions in the 

dimension. 
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5- Producing domain/application type-specific versions of ALTAI concentrated around risks relevant 

to critical infrastructure domains.  

The adapted version should contain only relevant questions and tailor the assessment to the 

applications and risks that are connected to it. The questions can also be adapted to be applicable at 

the earlier development stages and be formulated as suggestions and not as a checklist.  

The formulation of ALTAI questions has an influence on the assessment results. For example, current 

coverage of the dimension of Human Accountability and Oversight is directed more to commercial 

social applications. Some questions are less relevant for the industrial applications covered in the 

AI4REALNET use cases because of the differences in the UI and the kinds of interactions users have 

with the AI system. However, such applications are designed for human-machine interaction and need 

to be assessed accordingly.  

Furthermore, if the formulation makes the question not relevant, it means that the coverage of ALTAI 

is not full and cannot provide a full picture of the state of the system. The functions or properties not 

mentioned in the ALTAI questions are not evaluated, disregarding their importance for the AI system. 

This calls for further improvements in the assessment process to increase its suitability for applications 

in safety-critical infrastructure (see section 3.3). 
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3. CONCEPTUAL FRAMEWORK 

A generic overview of the AI4REALNET conceptual framework building blocks is shown in Figure 9, 

which also summarizes the structure of this section, where each building block is shown with its 

corresponding subsection. The project followed an interdisciplinary approach to build this framework.  

The framework combines traditionally separate fields, such as psychology and cognitive engineering, 

to study how experts make collaborative decisions in complex situations (where automation can have 

a role) and develop effective design and evaluation criteria for supporting human decision-making. 

Other fields the framework draws on include mathematics, decision theory, computer science, and 

specific engineering domains related to energy and mobility. Moreover, for the AI system design, 

systems engineering and theory adapted to the integration of TAI were applied to construct the 

operational and functional view and logical architecture of the system to cover the functional and non-

functional requirements of the UCs from section 2. 

In Section 3.1, the context and decision environment for critical network infrastructures are presented 

based on the UC scenarios described in the first part of this document. Section 3.2 describes the 

decision-making process from the human agent perspective and as a sociotechnical system 

(subsection 3.2.1), and the decision-making process from the AI agent perspective and the 

corresponding strategies and methods (subsection 3.2.2). It subsequently details the methodology 

behind the conceptual framework alongside the system design steps required to conceptualize a 

generic human-AI interaction framework (subsection 3.2.3). Finally, section 3.3 examines the 

epistemological and normative foundations of the notion of TAI and analyses the different 

components of risk and their application to AI, focusing on critical infrastructures. 

 

FIGURE 9 – GENERIC VIEW OF CONCEPTUAL FRAMEWORK BUILDING BLOCKS AND SECTION ORGANIZATION 
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3.1 CONTEXT AND DECISION ENVIRONMENT 

3.1.1 DECISIONS ON CRITICAL NETWORK INFRASTRUCTURES 

Decisions in critical network infrastructure operations are at the heart of operational processes in 

critical network infrastructures. They can be described in three main points (see Figure 10 and Table 

6). Firstly, they are made to manage constraints on a network capacity that can stem from external 

events (operational disruptions or emergencies) and are detected through observations or forecasts 

of the infrastructure’s state that include a certain level of uncertainty and external context. Secondly, 

they also involve multiple operators or stakeholders from short to long-term horizons. Lastly, they are 

made under time constraints and trade-offs between multiple and conflicting objectives and lead to 

both preventive and corrective actions that are chosen within a large action space and are planned or 

implemented in real-time, respectively.  

Examples of decision-making scenarios are given in Annex 4, which are about context, characteristics, 

impacts, and evaluation of decisions.  

 

FIGURE 10 – DECISIONS IN CRITICAL NETWORK INFRASTRUCTURE OPERATIONS 

The criticality of the decisions is directly linked to the critical nature of the underlying infrastructure 

for ensuring vital societal functions, health, safety, security, economic or well-being of people, namely: 

“European critical infrastructure means an asset, system or part thereof located on EU territory, which 

is essential for the maintenance of vital societal functions, health, safety, security, economic or well-

being of people, and the disruption or destruction of which would have a significant impact on at least 

two Member States, as result of the failure to maintain those functions. The significance of the impact 
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is assessed against distinct cross-cutting criteria, which encompass casualties, economic and 

environmental effects and public effects.”12 

The decisions on critical network infrastructures can be analyzed based on the following framework 

(see Figure 11), which is centered on the decision-making and includes: 

• Prerequisites to make a decision, that is, the environment in which the decision is made, 

composed of a context13 (e.g., network infrastructure, events) and characteristics14 of a 

decision,  

• Consequences, or impacts of a decision, that is its results,  

• Evaluation of a decision. 

  

FIGURE 11 –  DECISIONS ANALYSIS OF CRITICAL NETWORK INFRASTRUCTURES 

The decision-making step itself is triggered by a given event detected in the environment. It involves 

both the human operator and the AI-based decision system, who interact in multiple ways (manual, 

co-learning, and autonomous). It is composed of back-and-forth iterations between exploration and 

validation/feedback tasks, as depicted in Figure 12. 

 
12 Source: Directive 2008/114/EC, Articles 2 and 3 

13 In a Reinforcement Learning context, this can be referred to as the ”observation space” 

14 In a Reinforcement Learning context, this can be referred to as the “action space” 
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FIGURE 12 – DETAIL OF DECISION MAKING 

Common works have facilitated the identification of these common steps across all project domains 

centered around illustrative examples of various operating scenarios (described more in detail in 

Annex 4). 

3.1.2 CONTEXT, CHARACTERISTICS, IMPACTS, AND EVALUATION OF 

DECISIONS 

To extract the common aspects of decisions across the three types of critical infrastructures studied 

(see section 3.1.1). Thus, to provide a better description of the decision process from a business 

perspective, an analysis was performed on data collected using a detailed questionnaire for each 

domain (the data can be found in Annex 4). This questionnaire is structured into four main topics: 

context, characteristics, impacts, and evaluation of decisions. 

Based on all data collected, a similarity score has been performed across pairs of domains to give an 

idea of how much similarity exists across the three domains (the methodology is detailed in Annex 4): 

Decision analysis Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Context 13% 13% 12% 

Characteristics 40% 50% 50% 

Impacts 0% 4% 0% 

Evaluation (KPIs) 23% 38% 46% 

TABLE 5 – SIMILARITY SCORE OF DECISION ANALYSIS ACROSS DOMAINS 

Even if the decision context is different for each domain (which can be explained by the fact that each 

domain remains intrinsically different), we observe that the characteristics of the decision have a 

higher degree of similarity, which is of the same level of magnitude across the different pairs of 

domains. This illustrates the interest in performing multi-domain work. 

The following table lists the words describing the decision process that are similar across all three 

domains, for decision context and characteristics: 
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Category Similar words 

context of the decision process 
• external events,  

• multiple operators 

decision characteristics 

• preventive or corrective, 

• planned or real-time, 

• large and mixed action space, 

• real-time to long-term. 

TABLE 6 – SIMILAR DECISION CHARACTERISTICS ACROSS ALL DOMAINS 

Then, the second highest similarity is obtained on the evaluation part, with the following KPIs similar 

across all domains: 

• assistant relevance,  

• trust in the AI system. 

Within the multi-domain work, this shows the interest of the evaluation that will be carried out in WP4. 

On the other hand, the level of similarity across domains is almost zero for the “impact of a decision” 

topic: this can be explained by the very domain-specific impacts of each decision. In line with the 

similarity scores obtained for the “impact of a decision” topic, there are no similar words across all 

domains for this topic. 

Finally, we can observe that the two most similar pairs of domains are “Railway-Air Traffic” (highest) 

and “Electricity-Railway”. 

 

3.2 DECISION-MAKING PROCESS 

3.2.1 HUMAN AGENT AND DECISION-MAKING 

This section describes the AI4REALNET framework from an overarching perspective and from a 

sociotechnical systems perspective. The main assumption is that all work systems are sociotechnical 

as they follow different principles, which must be considered when combining them. Only joint 

optimization increases the performance of the work system as a whole. In contrast, optimization of 

one sub-system may decrease overall performance. This is because the two sub-systems interact and 

hence may empower or depower each other.  

Regarding AI4REALNET, this leads to two main conclusions. First, AI design needs to take requirements 

derived from characteristics of the social sub-system (i.e., human factors) into account. Second, to be 

able to exploit AI capabilities and potentials, the social sub-system must also be designed accordingly. 

This refers to social aspects such as human skills, process design, or even organizational culture. If, for 

example, AI is designed as a system providing recommendations, it is the human’s role to judge these 

recommendations and to decide. This requires, but is not sufficient for, appropriate skills. In addition, 

a corresponding task design is required. Finally, the leadership style also needs to fit the concept of 

the envisioned role. This is because humans can make mistakes and, therefore, wrongly reject a 

recommendation generated by AI. A likely consequence of being blamed for this mistake is that the 

person concerned will no longer have the confidence to reject AI-based recommendations and will 
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blindly nod them off. This cultural effect contradicts the original AI design, which depends on an 

engaged human decision-maker.  

General principles for sociotechnical system design are well elaborated, e.g., (Clegg, 2000). However, 

with regard to AI integration into sociotechnical systems, there is still significant research required, as 

stated, e.g., by the National Academies of Sciences, Engineering, and Medicine (2020), by (Endsley, 

2023a), or by (Naikar et al., 2023).  

Against this background, three aspects of AI integration in sociotechnical systems relevant to 

AI4REALNET are examined in the following sections, namely different design approaches and their 

effect on human behavior, normative aspects of AI design, and descriptive aspects of AI design. 

3.2.1.1 DIFFERENT DESIGN APPROACHES AND THEIR EFFECT ON HUMAN BEHAVIOR 

When introducing Information Technology into work processes, two fundamentally different 

strategies can be pursued: “automate” versus “informate” (Zuboff, 1988). While automation aims at 

replacing human skills and human effort with technology, information aims at complementing humans 

with technology. In practice, full automation has not (yet) been achieved for complex work processes; 

there are always humans involved when supposedly autonomous systems are integrated into 

sociotechnical systems (Bradshaw et al., 2013). However, if only those functions are allocated to 

humans that cannot be automated for technical or cost reasons, the result is an unaccomplishable task 

for humans. Bainbridge (Bainbridge, 1983) described this left-over approach as “Ironies of 

Automation”. The main problem is that humans need to monitor technical performance, which causes 

problems like monotony and fatigue. Beyond this, humans may lack the capabilities required to 

supervise a technology that was designed to act faster and take more factors into account than humans 

are able to. Other negative effects of the left-over approach include, for example, over-confidence and 

under-confidence in technology, as well as misjudgment of process states, inadequate situation 

awareness, demotivation, or loss of skills and experiences as a result of automation (e.g., Manzey, 

2012).  

Avoiding such negative effects on the human contribution to system safety and reliability is particularly 

important for AI4REALNET. This is because AI4REALNET aims to develop AI support to improve the 

resilience of critical network infrastructures. ATM is one of the networks focused on by AI4REALNET. 

In a white paper on resilience engineering, EUROCONTROL – the European Organisation for the Safety 

of Air Navigation – states ANSPs are increasingly confronted with instability and variability and that 

“this requires them to be flexible, to rely on human ingenuity and skill (…)” (EUROCONTROL, 2009, p.8). 

The same paper defines resilience as the “(...) intrinsic ability of a system to adjust its functioning prior 

to, during, or following changes and disturbances so that it can sustain required operations under both 

expected and unexpected conditions“ (EUROCONTROL, 2009, p.2). It is common sense in the resilience 

engineering community that humans crucially provide system resilience (e.g., Hollnagel et al., 2006). 

With regard to AI, (Naikar et al., 2023) state that “The features of emerging AI technologies, assessed 

together with the properties of complex environments, suggest that their relationships to humans may 

need to become increasingly collaborative in nature.” (p. 1688).  

To enable human-technology collaboration, technology needs to be designed and implemented into 

organizational processes in a way that takes human characteristics into account (e.g., Grote et al., 

1995). For AI, the corresponding design requirements have been described in (Wäfler and Rack, 2021; 
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Endsley, 2023b; Miller, 2023). These requirements take into account the fact that humans and 

technology are qualitatively different, even though technology, due to machine learning (ML), has 

developed impressive capabilities. Humans are distinguished by their understanding, commitment, 

and ability to take responsibility. To fully activate and sustain these traits, tasks should be designed to 

keep them consistently engaged. For example, humans must have an active role in task performance 

in order to maintain situational awareness. If a passive role only is assigned to humans, their attention 

and ability to concentrate will be impaired. A certain degree of autonomy and self-determination is a 

prerequisite for humans to be in a state of interest and commitment to the task (i.e., intrinsic 

motivation). If prerequisites like these are not met, humans will not be able to contribute their 

potential to the joint human-AI performance. Various factors affect these prerequisites. One of them 

is AI design. It can support an active role of the human or impose a passive role. It can increase human 

autonomy or take control of the human. In the following sections, corresponding normative design 

requirements will be described for four human-oriented objectives: human decision-making, human 

motivation, human learning, and human trust in AI.  

3.2.1.2 NORMATIVE ASPECTS 

Miller (2023) describes five types of how AI can support decision-making in human-AI collaborative 

systems, i.e., five types of explainable AI (XAI):  

• Recommendations without explanations: AI provides suggestions for decisions without any 

further explanations. 

• Recommendations with explanations: AI provides suggestions for decisions with further 

explanations. 

• Recommendations with interpretable model: AI makes its decision model transparent. 

• Cognitive forcing: The Human makes the initial decision; AI provides explanations and 

recommendations regarding this human-initialized decision. 

• Evaluative AI: The Human formulates a hypothesis, and AI provides the human with evidence 

for and against this hypothesis. 

The following section describes how these five types of XAI help or hinder human decision-making, 

human motivation, human learning, and human trust in AI. Against this background, the consequences 

of the three AI4REALNET scenarios: i) AI-assistant to human (human in control), ii) joint human-AI 

decision-making (including human-AI co-learning), and iii) autonomous AI (human as a supervisor) are 

reflected.  

3.2.1.3 HUMAN DECISION-MAKING 

Today’s AI-based decision-support systems are mainly based on recommendations. However, 

recommendations provided by AI are usually not sufficient, even if they are enriched by means of 

explanations (XAI) and transparency (Eisbach et al., 2023; Miller, 2023). Several studies showed that 

explanations do not automatically lead to better decisions (Ngo & Krämer, 2022; Zhang et al.). 

Therefore, rather than just providing decisions, joint human-AI decision-making based on the 

complementary capabilities of humans and AI is required (Endsley, 2023; Miller, 2023). From a 

psychological perspective, joint decision-making needs to consider the human decision-making 

processes with its cognitive elements as well as with its related biases such as the anchoring effect or 

the confirmation bias (Eisbach et al., 2023; Ha & Kim, 2023; Wang et al., 2019).  



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

64 

Human decision-making goes beyond mere choice between options. Rather, it is a multifaceted 

cognitive process that aims to make sense of and understand complex and dynamic environments in 

order to make meaningful decisions (Endsley, 2023b; Hoffman et al., 2009; Klein et al., 2003; Klein, 

2018). Macrocognitions such as problem detection, attention management, and anticipation are key 

in this process. Furthermore, effective decision-making depends on profound operational knowledge, 

enabling further macrocognitions such as process monitoring and situation awareness, allowing for 

timely intervention when needed. 

The design and deployment of AI are changing human tasks and, consequently also, the conditions for 

carrying out these cognitive processes. It has an impact on human behavior and perception and, 

ultimately, on decision outcomes (Endsley, 2023b; Parker and Grote, 2022). AI must, therefore, be 

designed and deployed in a way that supports these cognitive processes to ensure the quality of 

decisions. 

In the following sections, relevant cognitive processes related to 1) developing a thorough knowledge 

of the operational process, 2) enhancing process monitoring, 3) achieving a comprehensive 

understanding of the current situation, and 4) mitigating cognitive biases are described. 

3.2.1.3.1 KNOWLEDGE OF THE OPERATIONAL PROCESS  

At its core, knowledge of the operational process refers to the critical infrastructure that needs to be 

controlled. It includes but is not limited to knowledge about system behavior in terms of knowing how 

the system operates, how it behaves under normal and non-normal conditions, and how it responds 

to various inputs from its environment. This also includes knowledge of leverage points for influencing 

processes. This expertise is represented in mental models (Endsley, 2000; Klein, 2018; Klein et al., 

2003). Consequently, AI must provide insights that are suitable for developing, maintaining, and 

refining the corresponding mental models of human decision-makers. 

3.2.1.3.2 MONITORING THE OPERATIONAL PROCESS 

Monitoring the operational process through AI is central to understanding the real-time process status 

and making informed decisions based on current conditions. This requires knowing what to look for 

and constant attention management (Endsley, 2023a; Klein, 2018; Klein et al., 2003). In this way, AI 

must reveal both potential problem areas in the operational processes and support humans in 

developing adequate mental models. 

3.2.1.3.3 UNDERSTANDING THE CURRENT SITUATION 

Detecting and comprehending problems, as well as anticipating further developments, serves to 

understand the current situation, resulting in situation awareness (Endsley, 2000, 2023b, 2023a; Klein, 

2018; Klein et al., 2003). This is associated with knowing what to expect from the future situation and 

knowing what to do. In this way, AI must support humans in the continuous development, updating, 

and refinement of situational awareness in relation to the current operation of the system and possible 

future states. 

3.2.1.3.4 MITIGATING COGNITIVE BIASES 

The anchoring effect describes a remarkably robust cognitive bias that influences human judgment 

and decision-making (Furnham & Boo, 2011; Pohl, 2006). It describes the phenomenon that initially 

presented information “anchors” people’s attention and perception, making them blind to other 

information (Tversky & Kahneman, 1974). It emerges regardless of different factors such as motivation, 
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cognitive load, expertise, or even types of anchors (Furnham & Boo, 2011). However, it is known that 

“the higher the ambiguity, the lower the familiarity, relevance or personal involvement with the 

problem, a more trustworthy source or plausible bid/estimate, the stronger the anchoring effects” 

(Furnham & Boo, 2011, p. 37). The anchoring effect is characterized by its long-lasting effects (Pohl, 

2006; Wilson et al., 1996). Even an explicit communication of the anchoring effect does not mitigate 

the effect (Wilson et al., 1996). 

Confirmation bias refers to the tendency to seek confirmation of one’s own assumptions by selectively 

searching for, interpreting, and remembering information in a way that systematically hinders the 

possibility of rejecting one's own assumptions (Pohl, 2006). Confirmation bias, therefore, leads to 

information that contradicts one's own assumptions being neglected, which causes distorted 

decisions. 

To overcome the confirmation bias in human-AI collaboration, Ha and Kim (Ha and Kim, 2023) suggest 

providing the human with a priori information (e.g., a set of data that is taken into account when 

computing decisions) before showing the final decisions generated by AI. According to these authors, 

this might be the only way to effectively overcome the confirmation bias. In contrast, there are still no 

ways to fully overcome the anchoring effect when AI suggests recommendations (Pohl, 2006; Wilson 

et al., 1996; Furnham & Boo, 2011). 

3.2.1.3.5 EFFECTS OF AI APPROACHES ON HUMAN DECISION-MAKING 

Table 7 evaluates what impact different XAI approaches (according to Miller, 2023) have on human 

decision-making (i.e., on macrocognition and cognitive biases). 

 

Type of XAI (Miller, 2023) Macrocognition Cognitive biases 

Recommendations 

without explanations 

-/- -/- 

Recommendations with 

explanations 

+/- -/- 

Recommendations with 

an interpretable model 

+/- -/- 

Cognitive forcing 
+/- +/- 

Evaluative AI 
+/+ +/+ 

Note. Each type of AI (Miller, 2023) is evaluated to determine the extent to which it supports the macrocognitive functions 

and processes and counteracts the cognitive biases. The scoring is as follows: -/- = no support/ low counteraction;  +/- = partial 

support/ medium counteraction; +/+ = fully supported/ high counteraction. 

TABLE 7 – TYPE OF XAI RELATED TO MACROCOGNITION AND COGNITIVE BIASES 

Human decision-making is a complex cognitive endeavor involving many macrocognitive processes and 

functions in the human’s brain (e.g., detecting problems, managing attention, sensemaking, and 

maintaining situation awareness). An AI supporting human decision-making needs to explicitly support 

these processes and functions. An AI that simply makes recommendations does not support such 

human cognitive process and hence does not support the human decision-making process.  
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The evaluation of different types of XAI (according to Miller, 2023) with respect to their support of 

macrocognition indicates that recommendation-based approaches, even with explanations and 

interpretable models, fail to foster adequate situation awareness due to a lack of active human 

involvement in decision-making. Even if AI provides sophisticated explanations or interpretability, 

humans are not aware of the situation before the AI’s recommendations. This has implications for all 

macrocognitive functions and processes, as they are highly interdependent. As a result, quick and 

appropriate human evaluation of AI-generated decisions to deal with sudden events is most likely not 

possible.  

When there is sufficient time for humans to evaluate AI-generated decisions, recommendations 

without explanations still provide insufficient support for macrocognition, as they lack transparent 

reasoning and are, therefore, not comprehensible. In contrast, XAI approaches that provide 

explanations or interpretable models may offer partial support for some macrocognitive functions and 

processes, but only if explicitly designed for that purpose. However, for full macrocognitive support, 

sophisticated and multifaceted explanations are required (e.g., by evaluative AI). For example, to 

support the macrocognitive function of “detecting problems”, explanations must clarify the reasons 

for detected problems by identifying contributing factors or patterns. Similarly, the environmental 

changes that affect decisions should be detailed in explanations that support the macrocognitive 

function “adapting”.  

In addition, recommendations, regardless of explanations or interpretable models, can trigger 

anchoring effects and confirmation bias, likely leading to inappropriate evaluation of AI-generated 

decisions. 

Enhanced XAI approaches, such as cognitive forcing and evaluative AI, involve humans in the decision-

making process and are, therefore, better suited to support macrocognitive functions and processes. 

The involvement and support of macrocognition are greater with evaluative AI than with cognitive 

forcing. Cognitive forcing allows the human to initiate decisions (i.e., involving the human in setting 

the topic), but AI still only provides explanations and recommendations. In contrast, evaluative AI 

allows the human to formulate a hypothesis (i.e., involving the human in reasoning) while AI provides 

evidence for and against the human-generated hypothesis (supporting the human decision-making 

process).  

Evaluative AI goes beyond simply providing recommendations and explanations. It supports, among 

other things, sensemaking and maintaining situation awareness, as humans are cognitively involved in 

all phases of decision-making at any time. This is the prerequisite for the ability to respond quickly and 

appropriately to sudden events. Evaluative AI is also more effective at mitigating the confirmation bias 

by actively assisting humans in generating their own solutions, and it not only provides evidence 

supporting the human’s assumptions, but also provides evidence against them. Furthermore, the latter 

supports identifying new or erroneous patterns, thereby facilitating the refinement of mental models 

and other macrocognitive functions and processes. Nevertheless, addressing the anchoring effect 

remains a significant challenge.  

3.2.1.3.6 GENERAL CONCLUSIONS REGARDING AI4REALNET SCENARIOS 

In the AI4REALNET project, different scenarios will be developed and implemented, namely AI-

assistant to human (human in control), joint human-AI decision-making (including human-AI co-
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learning), and autonomous AI (human as a supervisor), which differ in their consequences for the 

decision-making process. 

Recommendation-based AI, as envisioned in the first scenario of AI-assistant to human (i.e., human in 

control), does not fully contribute to supporting macrocognition effectively. Although approaches with 

explanations or interpretable models may partially help improve understanding of the underlying 

decision-making basis, they do not meet many of the requirements sufficiently. Complete support for 

macrocognition requires complex and multifaceted explanations and active involvement of humans in 

the decision-making process. In addition, recommendations can trigger and reinforce anchoring effects 

and confirmation biases. Recommendation-based AI fails to help humans overcome these biases, as 

well as their own assumptions and misconceptions. The primary reason for these limitations is that 

recommendation-based AI solely provides recommendations without supporting humans in their own 

decision-making process and does not address the biases of either humans or AI. 

The scenario of joint human-AI decision-making (including human-AI co-learning) represents a 

significant advancement regarding the support of human decision-making processes due to several 

factors. Firstly, the active involvement of humans throughout the decision-making process supports 

sensemaking and other macrocognitive processes of human decision-making. This not only leads to a 

better understanding of how decisions are made but also to more informed decisions. It also helps 

humans to maintain situational awareness so that they can react quickly in urgent situations. Secondly, 

AI may also help humans identify new patterns and evaluate existing assumptions by providing 

evidence for and against these assumptions. This supports the mitigation of confirmation bias. 

Nevertheless, addressing the anchoring effect, which can even be triggered by the reaction of the AI, 

remains a significant challenge. 

The third scenario, autonomous AI (human as a supervisor), does not involve humans in decision-

making and, therefore, cannot be assigned to any of the XAI types described by Miller (Miller, 2023). 

It poses significant challenges regarding macrocognition and overcoming cognitive biases. It does not 

support any macrocognitive functions and processes, nor does it help humans overcome cognitive 

biases. This is due to the reduction of the human role in monitoring the AI, resulting in low situational 

awareness and, therefore, a higher probability of inappropriate decisions when the situation requires 

human intervention. 

3.2.1.4 HUMAN MOTIVATION 

The tendency to not use IT tools (Fildes et al., 2009) and algorithm aversion is quite common (Niehaus 

et al., 2022; Schaap et al., 2023). Therefore, intrinsic motivation to use AI must be deliberately 

promoted. Intrinsic motivation is triggered by task orientation - i.e., the state of a human's interest in 

and commitment to a task (Hackman & Oldham, 1976; Parker & Grote, 2022). Consequently, task 

design has an impact on a human’s motivation to perform and to achieve task-related objectives.  

Any automation that supports task fulfillment changes the contribution required from the human and 

thus the human’s task. Since AI automates at least parts of the task, the design of the AI and the way  

AI is used have a direct influence on human motivation.  

Key task aspects that influence human motivation are meaningfulness, autonomy, and feedback 

(Hackman & Oldham, 1976; Morgeson et al., 2005; Parker & Grote, 2022). AI and the way AI is used 
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must be specifically designed to have a positive impact on these aspects. Corresponding challenges 

and requirements for the design and use of AI are described below.  

3.2.1.4.1 MEANINGFULNESS 

Task-related meaningfulness means that humans experience meaningfulness in what they do 

(Hackman & Oldham, 1976; Parker & Grote, 2022; Sadeghian & Hassenzahl, 2022). This means that AI 

must provide them with answers to the question of why they do what they do.  

3.2.1.4.2 AUTONOMY 

Task-related autonomy means that humans are provided with options between which they can choose 

(Hackman & Oldham, 1976; Morgeson et al., 2005; Schaap et al., 2023). However, pseudo-autonomy 

must be avoided. For example, the choice between using an AI or not using it is considered pseudo-

autonomy. Rather, the possibility to choose between different ways of using AI offers a real choice. 

Similarly, the mere acceptance or rejection of AI-generated suggestions is considered pseudo-

autonomy. Instead, the choice between several possible solutions is considered to provide autonomy 

to the human.  

3.2.1.4.3 FEEDBACK 

To be motivated, people need feedback on their work. If people do not know (do not receive feedback) 

whether they have achieved their goals or not, they lose motivation. At its core, task-related feedback 

has two purposes. On the one hand, humans need to know how well they have achieved the objectives 

of their tasks once they have completed them. On the other hand, humans need to know whether they 

are on the right track when they fulfill the task. Both types of feedback should be provided promptly 

(Hackman & Oldham, 1976; Parker & Grote, 2022). Such feedback can be supported, for example, by 

an AI analyzing the effects of decisions made by humans or showing humans what effect decisions 

other than those made would have had.  

3.2.1.4.4 EFFECTS OF AI APPROACHES ON HUMAN MOTIVATION 

The following example illustrates how different AI approaches, according to (Miller, 2023), are rated 

regarding the three key task aspects that influence human motivation (Hackman & Oldham, 1976). The 

scores are also shown in Table 8. The table shows an assessment of the extent to which the 

prerequisites for motivation (experienced meaningfulness, experience responsibility, and knowledge 

of results of own work as described in the three sections above) are supported by the different types 

of XAI described by Miller (2023). 

In the medical field, a physician relies on an AI system to analyze x-ray images and make diagnoses. If 

the AI provides recommendations without any explanations, the physician's sense of meaningfulness, 

responsibility, and knowledge of their own effectiveness diminishes due to the lack of traceability, 

autonomy, and feedback. The lack of transparency makes the physician feel disconnected from the 

decision and the decision-making process, resulting in reduced intrinsic motivation. This, along with 

their inability to explain to the patient why the AI-recommended therapy was chosen, likely results in 

the recommendation being disregarded. 

Conversely, when the AI provides explained recommendations or interpretable models, decision 

transparency, as well as model transparency, increases. This allows the physician to at least partially 

understand the AI's reasoning, leading to a clearer understanding of the diagnosis and the diagnostic 

process, enabling them to explain it to the patient. However, despite this transparency, the doctor’s 
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involvement in decision-making remains limited, which prevents full cognitive engagement and leads 

to a decreased sense of meaningfulness and responsibility. Also, no transparency is provided regarding 

the effectiveness of human decisions. This transparency is important for motivation. Suitable AI can 

provide such feedback: The physician can accept, reject, or modify the AI's suggestion. However, they 

do not receive any explicit feedback on whether they have made the right decision or whether a 

different decision would have been better. AI could help here by also showing the physician the effects 

of their decision. With an evaluative AI, for example, the physician could formulate their expectations 

regarding the effect of their decision as a hypothesis, and the AI would provide evidence pro and contra 

their expectations. This would give the physician explicit feedback on their decisions and thus have a 

positive effect on their motivation. 

Alternatively, human-centered approaches such as cognitive forcing and evaluative AI empower the 

physician to take the lead in decision-making. With cognitive forcing, the physician initiates the 

decision-making process, which not only increases their control but also forces them to reflect on the 

decision-making process. While the former increases their sense of responsibility, the latter results in 

a clearer understanding of the “why” and hence provides a sense of meaningfulness. Both foster 

intrinsic motivation and engagement with the AI system.  

Evaluative AI has even greater potential than cognitive forcing to foster intrinsic motivation, as the 

physician formulates hypotheses about diagnostic and treatment options for which the AI provides 

evidence in favor and against. The physician is even more involved in the decision-making process, 

which reinforces their sense of purpose and responsibility. If evaluative AI also supports the 

assessment of whether diagnosis and treatment options have led to the expected effects, this will also 

support the physician's sense of their own effectiveness. Consequently, evaluative AI has the greatest 

potential to foster intrinsic motivation.  

Type of XAI (Miller, 

2023) 

Experienced 

meaningfulness 

Experienced 

responsibility 

Knowledge of results 

of work 

Recommendations 

without explanations 
-/- -/- -/- 

Recommendations with 

explanations 
+/- -/- +/- 

Recommendations with 

an interpretable model 
+/- -/- +/- 

Cognitive forcing +/+ +/+ +/- 

Evaluative AI +/+ +/+ +/+ 

Note. Each type of AI (Miller, 2023) is evaluated to determine the extent to which it supports the corresponding critical 

psychological state according to the Job Characteristics Model (Hackman & Oldham, 1976). The scoring is as follows: -/- = no 

support; +/- = partial support; +/+ = fully supported. 

TABLE 8 – TYPE OF XAI RELATED TO THE CRITICAL PSYCHOLOGICAL STATES AND THEIR EXPRESSION 

3.2.1.4.5 GENERAL CONCLUSIONS REGARDING AI4REALNET SCENARIOS 

In the AI4REALNET project, different scenarios are considered, namely AI-assistant to human, joint 

human-AI decision-making (including human-AI co-learning), and autonomous AI, are developed and 
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implemented, which differ in their consequences on the development and maintenance of intrinsic 

work motivation. 

The first scenario, AI-assistant to human (human in control), is a recommendation-based decision-

support that can come with or without explanations or an interpretable model. All variants have in 

common that they do not involve the human in decision-making but assign him the role of assessing a 

recommendation. This poses several challenges for intrinsic work motivation and humans’ ability to 

take on the role assigned to them. These challenges include 1) a lack of deep understanding of the 

decision and the decision-making process, reducing the sense of meaningfulness, 2) limited autonomy 

if the AI provides only one recommendation, leading to a lack of sense of responsibility, and 3) no 

feedback on the decision’s effect resulting in low knowledge of results of own work. This occurs as the 

AI initiates and is solely involved in recommendation generation, while the human only selects among 

recommendations without prior involvement. However, explanations may provide some 

understanding and contribute to experiencing meaningfulness. Including feedback on decisions’ 

effects in explanations enhances knowledge of the results of work. Generally, relying on 

recommendation-based AI without human involvement, as in this scenario, leads to low intrinsic work 

motivation and creates barriers to high performance in human-AI collaboration. To compensate for 

low experienced meaningfulness and low experienced responsibility, humans may choose not to use 

AI support and instead make decisions themselves.  

Scenario two, which is joint human-AI decision-making (including human-AI co-learning), involves the 

human in the decision-making process. This can be realized by cognitive forcing and evaluative AI. Both 

are promising approaches to human-AI collaboration regarding intrinsic work motivation. By involving 

humans throughout the decision-making process, experienced meaningfulness is positively influenced. 

In addition, the active involvement of humans in the decision-making process gives them a degree of 

control over what the AI is doing, which increases their sense of autonomy. This allows the human to 

initiate recommendation (cognitive forcing) or even formulate a hypothesis (evaluative AI), resulting 

in experienced responsibility for the results of the work. In addition, evaluative AI may provide humans 

with comprehensible feedback regarding the effectiveness of their decisions and, therefore, increases 

intrinsic motivation to participate in the collaboration actively. 

The third scenario of autonomous AI (human as a supervisor) does not involve humans in decision-

making and, therefore, cannot be assigned to any of the XAI types described by Miller (Miller, 2023). 

It poses significant challenges regarding intrinsic motivation as it neither supports experienced 

meaningfulness nor experienced responsibility or knowledge of the results of one's own work. This 

approach has no benefits regarding intrinsic work motivation. In addition, the implementation of fully 

autonomous AI results in humans only taking on monitoring tasks, which relates to the irony of 

automation (Bainbridge, 1983): humans will lack situation awareness but are expected to intervene 

when necessary, leading to potential breakdowns in effectiveness and increased risks in task 

execution.  

3.2.1.5 HUMAN LEARNING 

Human learning is a multifaceted process that incorporates psychological, physical, and social 

dimensions, shaping our perception and interaction with the world (Alexander et al., 2009). At its core, 

the experiential learning theory proposed by David Kolb, (1984) outlines a cyclical four-stage model—

concrete experience, reflective observation, abstract conceptualization, and active experimentation. 
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This model emphasizes the dynamic and iterative nature of learning, where individuals continuously 

engage with experiences to acquire and refine knowledge (A. Y. Kolb & Kolb, 2009). In the context of 

decision-making, a deliberately designed learning process is crucial for the human decision-maker to 

develop a thorough understanding of the subject matter of decision-making (i.e., the process), the 

decision-support tool (i.e., the AI tool), and the human decision-makers (i.e., learning about oneself). 

The following sub-chapters describe these three learning objectives. 

3.2.1.5.1 LEARNING ABOUT THE PROCESS 

Learning about the process means that humans gain a comprehensive understanding of the subject 

matter of decision-making. To be able to control the process, they need to develop profound expertise 

about both critical factors and how they interact with each other, as well as leverage points to interfere 

in a corrective or preventive manner. This allows the humans to monitor the system, develop situation 

awareness, detect problems, and find solutions (G. Klein & Wright, 2016). Learning about the process 

is a prerequisite to becoming an expert decision-maker. 

3.2.1.5.2 LEARNING ABOUT THE TOOL (AI) 

Learning about AI-based tools means that humans gain knowledge of how AI functions as a tool. This 

is not focused on the AI’s inner workings and algorithms, but rather on its capabilities and error 

boundaries, which humans need to understand to develop an accurate mental model (Bansal et al., 

2019; Endsley, 2023b). This implies that humans are also aware of the AI’s biases and potentially 

distorted views of the problem so that they know when they can rely on the AI’s output and when they 

cannot. Learning about the AI tool is a prerequisite to obtaining appropriate trust. 

3.2.1.5.3 LEARNING ABOUT ONESELF 

When working, humans show variability. For example, human decision-makers may tend to make 

riskier decisions towards the end of a shift. Learning about themselves means that humans gain a more 

comprehensive understanding of their behavior (Jelodari et al., 2023; Pronin, 2007) and can update 

their mental models of themselves. To support this, AI should provide transparency about humans’ 

behavioral patterns and biases. 

3.2.1.5.4 EFFECTS OF AI APPROACHES ON HUMAN LEARNING 

Table 9 provides an example illustrating how different AI approaches (Miller, 2023) are assessed 

regarding effective human learning according to the Experiential Learning Theory (Kolb, 1984). The 

Experiential Learning Theory is a cyclic process, which is characterized by a sequential learning 

progression, emphasizing the necessity of engaging with each stage in a systematic manner to ensure 

a thorough and effective learning experience. This sequence facilitates the conversion of experiences 

into actionable knowledge through a recurring cycle of experience, reflection, theory development, 

and experimentation (A. Y. Kolb & Kolb, 2009). 

Recommendations without explanations: This approach does not engage with any of the four cyclic 

phases of experiential learning. While humans can have new experiences with AI, it is difficult for them 

to fully engage with AI if they do not understand AI or receive an explanation as to why AI has 

recommended something. Humans will have trouble understanding the recommendations without 

explanations. Without understanding, neither an accurate mental model of the task, the process, the 

AI, nor oneself can be created. Supporting the development of such mental models would be central 

to an effective human learning process.  
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Recommendations with explanations: This approach minimally helps humans to develop an accurate 

mental model of tasks and processes through the explanation of recommendations. However, because 

humans are not involved in developing the recommendations, it is difficult for them to understand and 

interpret the corresponding explanations. Consequently, humans can only make a few concrete 

experiences that reflect observations and support the construction of abstract conceptualizations of 

the task and the process. Furthermore, learning about the AI tool is limited, and learning about oneself 

is not supported at all. 

Recommendations with an interpretable model: This approach somewhat helps humans develop an 

accurate mental model of the AI tool as well as of the task and process because the recommendations 

are more interpretable for humans. These interpretable models set the basis for humans to make 

concrete experiences with the task and process as well as with the AI tool. They can reflect on 

observations about the AI recommendations and thus consider what kind of recommendations an AI 

makes in different contexts. As a result, they can learn more about AI than with only explanations. 

They could learn even more about the tasks and the process when they get feedback about the utility 

and the actual success of the decision. Furthermore, learning about oneself is not supported at all. 

Cognitive forcing: This approach enables people to have very concrete experiences by forcing them to 

deal with explanatory information (concrete experience). The cognitive forcing approach, given 

enough time, allows humans to reflect on their experience. Through this reflection, they can not only 

think about the AI, the task, and the process but also about their own behavior and thus also learn 

about themselves (reflective observation). This enables humans to build an accurate mental model of 

the AI, the task and the process, and even about themselves. Reflections allow humans to abstract 

their assumptions, develop new ideas, or adapt existing theories about the AI, the task, and the 

process, as well as about themselves (abstract conceptualization). However, this is only possible if the 

time, resources, and mental workload allow it. In this approach, humans are forced to actively 

experiment by applying abstract concepts in real-life scenarios (active experimentation).  

Evaluative AI: This has a similar effect on human learning as cognitive forcing but goes further. 

Evaluative AI provides the human not only with explanations and recommendations on human-

initiated decisions, but actively supports humans in exploring their own assumptions by providing 

evidence for and against these assumptions. This approach allows humans to go through all four stages 

of the experiential learning theory. In the process of hypothesizing and evaluating these hypotheses 

by the AI, humans gain concrete experience about the task and process as well as about the limitations 

of the AI tool. As the AI tool challenges the hypotheses proposed by humans, humans may even learn 

about themselves. This testing of hypotheses by the AI tool allows humans to reflect on their 

observations and view their experiences from many perspectives (reflective observation). Humans 

then conceptualize their reflections by developing new ideas or adapting existing theories (abstract 

conceptualization). Evaluative AI enables humans to use the new abstract conceptualization for their 

new hypothesis, which they test again with the AI. Thus, they actively experiment with abstract 

concepts in real-world scenarios and observe the results (active experimentation). 

It should be emphasized that both cognitive forcing as well as evaluative AI involve learning about 

oneself, yet they only support this indirectly. In contrast, direct support could be achieved with an AI 

tool that observes human decision-making and provides direct feedback, which in turn stimulates 

human self-reflection. 
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Type of XAI (Miller, 2023) 
Concrete 

Experience 

Reflective 

Observation 

Abstract 

Conceptualization 

Active 

Experimentation 

Recommendations without 

explanations 
-/- -/- -/- -/- 

Recommendations with 

explanations 
+/- -/- -/- -/- 

Recommendations with an 

interpretable model 
+/- +/- -/- -/- 

Cognitive forcing +/+ +/+ +/- +/- 

Evaluative AI +/+ +/+ +/+ +/+ 

Note. Each type of AI (Miller, 2023) is evaluated to determine the extent to which the different learning phases of experiential 

learning (Kolb, 1984) are supported: -/- = no support; +/- = partial support; +/+ = fully supported.  

TABLE 9 – TYPE OF XAI RELATED TO THE CRITICAL PSYCHOLOGICAL STATES AND THEIR EXPRESSION 

3.2.1.5.5 GENERAL CONCLUSIONS REGARDING AI4REALNET SCENARIOS 

In the context of the AI4REALNET project, particularly in relation to the second scenario of joint human-

AI decision-making (including human-AI co-learning), it is becoming clear that this type of interaction 

between humans and AI is central to effective human learning with respect to all three learning objects 

- (1) learning about the process and the task, (2) learning about the AI and (3) learning about one's 

own behavior. This second scenario aligns with two types of AI support outlined by Miller (Miller, 

2023): cognitive forcing and evaluative AI. These two types offer an approach through which people 

can gain a deep understanding of and an active engagement with AI tools. 

In order to enhance human learning, the AI agent should be transparent and capable of communicating 

in an understandable way. This communication includes the AI application itself, the task and process, 

and the human behavior. Understandable explanations and transparency are crucial for humans to 

develop a deep understanding of all three learning objects and apply this knowledge effectively. 

Moreover, AI should not only provide comprehensible explanations but rather support active human 

reflection or exploration in all four learning phases, according to Kolb (Kolb, 1984): Support in making 

concrete experiences, support in reflecting experiences, support in abstract conceptualization of 

reflections, and support in active experimentation with gained concepts.  Ideally, this exploration is 

supported in relation to all three learning objectives, i.e., exploration of the task and the processes, 

exploration of the AI, and exploration of oneself. 

AI4REALNET scenario one, i.e., AI-assistant to human (i.e., human in control), offers some 

opportunities to learn when it provides explanations and transparency. However, the learning support 

is limited as there is no interactivity, which prevents the important learning opportunity of exploration.  

Finally, AI4REALNET scenario three, i.e., autonomous AI (human as a supervisor), does not support 

human learning at all. 
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3.2.1.6 HUMAN TRUST 

Human trust in AI is one of the cornerstones of effective human-AI interactions (Jacovi et al., 2021; Lee 

& See, 2004). It represents a combination of beliefs, knowledge, emotions, and experiences that a 

person holds about an AI system (Cahour & Forzy, 2009). This complex construct influences how 

humans interact with, rely on, and integrate AI into their decision-making processes (Parasuraman & 

Manzey, 2010; Parasuraman & Riley, 1997). In contrast to trustworthiness, trust is not just a passive 

attribute, but a dynamic relationship between humans and AI that changes with every interaction 

(Hoffman, 2017). 

The interaction between humans and AI is shaped by the specific context of the tasks at hand and the 

capability of the AI to perform these tasks, which crucially influences trust dynamics (Hoffman et al., 

2018). Inappropriately high or low trust in AI can lead to significant mistakes: insufficient trust may 

result in neglecting useful AI recommendations and features, thereby missing out on potential 

benefits; too much trust can lead to over-reliance, potentially causing oversight of critical errors (Lee 

and See, 2004). The aim of the interaction between humans and AI should, therefore, be to enable 

humans to have appropriate trust in the AI. Appropriate trust mainly means having a realistic 

understanding of the AI tool’s boundaries or scope of application (Miller, 2023). This means that, with 

increasing experience, a human should appropriately trust the AI tool for specific tasks or objectives in 

certain contexts or problem scenarios while also appropriately mistrusting the AI tool for other tasks 

or objectives in specific contexts or problem situations. 

In the case of appropriate trust, automation transparency does not primarily mean that AI explains 

when and why humans should trust the AI tool’s results. This is because explanations, for their part, 

presuppose blind trust in explanations. Rather, it means that humans can learn the limitations and 

capabilities of an AI tool through experience with it. If humans are not provided with the means to 

explore and test AI functionality, they might choose alternative methods or tools that they perceive to 

offer greater transparency and control (Koopman and Hoffman, 2003). 

Experiencing the limits and possibilities fosters trust because people become familiar with the system 

through interaction. Therefore, the following challenges and requirements to gain appropriate trust 

are described.  

3.2.1.6.1 EFFECTS OF AI APPROACHES ON HUMAN TRUST 

Table 10 assesses how different AI approaches (Miller, 2023) support the development of appropriate 

trust. Appropriate trust in AI emerges when humans learn through repeated interaction and 

experience to correctly assess the capabilities and boundaries of AI. 

Recommendations without explanations, this approach fails to offer transparency and does not 

support the development of appropriate trust. It aligns poorly with developing appropriate trust 

because it provides no insight into the AI tool's capabilities and limitations, leaving humans unable to 

assess its reliability or relevance. 

Recommendations with explanations: This approach provides explanations alongside 

recommendations, but this is not sufficient for gaining appropriate trust. Providing recommendations 

with an accessible level of complexity is very challenging. This challenge restricts humans' ability to 

gain experience and understand the boundaries of AI. Furthermore, the explanation of 

recommendations does not directly refer to AI’s capabilities and limitations.  
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Recommendations with an interpretable model: This approach provides some insights into the inner 

workings of the AI and might partially reveal AI’s capabilities and limitations However, although the 

model aims to be interpretable, without enabling exploration or offering full transparency regarding 

boundaries, for humans it remains difficult to thoroughly understand or evaluate the AI, which hinders 

the establishment of appropriate trust. 

Cognitive forcing: Cognitive forcing provides a moderate level of exploration and transparency, thereby 

supporting the development of appropriate trust to some extent. By compelling humans to engage 

more deeply with the AI’s reasoning and decision-making process, this approach fosters a greater 

understanding and connection with the AI, laying a foundation for appropriate trust. 

Evaluative AI: This approach stands out as the most effective in ensuring humans can gain appropriate 

trust. It excels in both exploration and transparency, directly involving humans in the decision-making 

process and providing clear insights into the AI tool’s functionality. By facilitating a deep and active 

engagement with the AI, evaluative AI empowers humans to critically assess and understand the AI’s 

capabilities and limitations, enabling the fostering of well-informed and appropriate trust. 

Type of XAI (Miller, 2023) Exploration Transparency Appropriate Trust 

Recommendations without 

explanations 

-/- -/- -/- 

Recommendations with 

explanations 

-/- -/- -/- 

Recommendations with an 

interpretable model 

-/- +/- +/- 

Cognitive forcing 
+/- +/- +/- 

Evaluative AI 
+/+ +/+ +/+ 

Note. Each type of AI (Miller, 2023) is assessed to determine the extent to which the various requirements for appropriate 

human trust in AI are supported. The evaluation is as follows: -/- = no support; +/- = partial support; +/+ = fully supported. 

TABLE 10 – TYPE OF XAI RELATED TO THE CRITICAL REQUIREMENTS AND THEIR EXPRESSION FOR 

ESTABLISHING APPROPRIATE TRUST IN AI 

3.2.1.6.2 GENERAL CONCLUSIONS REGARDING AI4REALNET SCENARIOS  

In the AI4REALNET project, the development and implementation of different scenarios - AI-assistant 

to human (human in control), joint human-AI decision-making (including human-AI co-learning), and 

autonomous AI (human as a supervisor) - offer distinct pathways to establishing appropriate trust 

between humans and AI.  

AI-assistant to Human (Human in Control): this scenario, characterized by recommendation-based 

decision support, can provide varying degrees of explanation and interpretable models. While this 

scenario provides a basic level of support, it inherently limits deep human involvement in the decision-

making process. Although humans have an active role in deciding whether to accept or reject the 

decision proposed by the AI, they are completely passive regarding the generation of the decision. As 

described by many authors, this often leads to the so-called ironies of automation (Bainbridge, 1983) 

or ironies of AI (Endsley, 2023b): AI takes much more information into account in its decision-making 
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process than humans could. As a result, humans are usually overstrained when they have to decide 

whether to accept the AI's suggestion or not. This excessive demand can lead to the human either 

nodding off or rejecting the AI-generated suggestion. Both because they are unable to judge it. In 

contrast, if people are more actively involved in the actual decision-making process, they can better 

assess the capabilities and limits of the AI, which is a prerequisite for developing appropriate trust in 

the AI.  

Joint human-AI Decision-Making (Including Human-AI Co-learning), this scenario elevates the role of 

humans in the AI decision-making process, facilitated by approaches like cognitive forcing and 

evaluative AI. By integrating humans more actively, this approach significantly enhances the potential 

for evolving appropriate trust by: 

1. Offering deeper insights into the AI’s reasoning, fostering a better understanding of how AI 

conclusions are reached. 

2. Granting humans a more active role, increasing the opportunity to explore and experiment with 

the AI tool to familiarize themselves with its boundaries. 

3. Providing an avenue for direct feedback on the effectiveness of decisions, which is critical for 

validating the AI tool’s accuracy (error boundaries) and utility. 

In this collaborative model, trust is cultivated through a continuous loop of interaction and feedback, 

allowing humans to adjust their trust based on direct experience with the AI tool’s performance. 

Autonomous AI (Human as a Supervisor), this scenario presents the most significant challenges for 

fostering appropriate trust due to no human involvement in the decision-making process. With 

humans relegated to supervisory roles, the opportunities for establishing a deep understanding and 

appropriate trust in AI are not given.  

In essence, the key to cultivating appropriate trust lies in designing AI systems that are not only 

advanced in their technical capabilities but also in their ability to engage humans in a manner that 

promotes transparency, exploration, and feedback about performance and error boundaries. Such an 

approach ensures that trust in AI tools is informed by direct experience and a comprehensive 

understanding of AI's error boundaries, leading to more effective and nuanced human-AI 

collaborations. 

3.2.1.7 ACCEPTANCE 

Cognitive engineering research has historically paid less attention to factors affecting the initial 

acceptance of new technology, thus factors possibly preceding trust, reliability, and others. Notice that 

the rejection of new technology can start at first exposure, perhaps even before an operator has used 

that technology. Notice a potential paradox in this: Operators might only develop trust after using a 

system, yet may be unwilling to trust a system they have not used. As such, initial acceptance of 

advanced decision-making automation can play a critical role in its successful deployment.  

Sociology, psychology, and information systems communities, on the other hand, have studied factors 

underlying initial acceptance. Here, the compatibility between humans and technology is considered 

a key construct for overcoming the hurdle toward initial acceptance and technology adoption. 

“Compatibility,” in this case, refers to the perceived fit of a technology within the context in which it is 
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used, driven by the user’s values, experiences, and needs. In general, the more compatible a 

technology is, the more likely it is to be accepted. 

Human-machine compatibility can be found at various levels of cognitive work, ranging from basic 

handling qualities to decision-making styles and methods of task execution as illustrated in Figure 13. 

Research has shown that automated systems involving a high level of cognitive work are generally not 

well accepted amongst human operators. Empirical insights gained in ATC have shown that strategic 

conformance, the apparent strategy match between human and machine solutions, plays an 

increasingly important role in the acceptance of advanced decision aid (Westin et al., 2016). Similarity 

between human and machine solutions and/or actions is external, overt, and observable, and is the 

extent to which cause and effect can be observed.  

In the ATC domain, the acceptance percentage of a personalized recommendation system (i.e., the 

system recommends human-like solutions to problems) was significantly better compared to a more 

general “one-size-fits-all” system (i.e., the system recommends more optimal solutions that are 

different from what human operators typically do). This result underlines the important role of 

strategic conformance in initial acceptance but also notes that, over time, the importance and practical 

benefits of strategic conformal automation can be questioned, considering daily and prolonged 

interaction with automated systems.  

 

FIGURE 13 – LEVELS OF HUMAN-MACHINE COMPATIBILITY AND THEIR RESPECTIVE CONSTRUCTS FOUND IN 

COGNITIVE ENGINEERING RESEARCH ARE ORDERED BY INCREASED LEVELS OF COGNITIVE WORK; ADAPTED 

FROM (WESTIN ET AL., 2016) 

3.2.1.8 DESCRIBING AND DESIGNING HUMAN-AI INTERACTION 

3.2.1.8.1 TOWARDS A COMMON FRAMEWORK 

For describing and designing human-AI interactions, lessons can be learned from human-automation 

interaction studies in cognitive engineering. These studies do not focus exclusively on AI, but on any 

form of technology with which human operators need to collaborate. In cognitive engineering, the gist 

of human-automation teamwork is centered around 1) team collaborations, with an emphasis on 

sharing and allocating control authority and autonomy between humans and automation, and 2) 

automation transparency, aimed at providing deeper system insights for fostering understanding, 
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trust, and acceptance. Currently, a generic design “cookbook” for human-automation interaction does 

not (yet) exist. Instead, AI4REALNET is exploring the integration of two promising and related 

frameworks that can be used for both analyzing and designing human-automation interaction: Joint 

Control Framework (JCF) (Vicente et al., 1995; Lundberg & Johansson, 2021) and Ecological Interface 

Design (EID) (Borst et al., 2015). 

In its most succinct form, JCF focuses on team collaborations by describing the execution and planning 

of activities (e.g., sensing, deciding, and action implementation) when those are distributed over 

different agents. EID focuses more on achieving system transparency by visualizing the (physical and 

intentional) constraints on activities, which determine in large part the content, structure, and form of 

a human-machine interface. Integrating these two frameworks is possible due to their shared common 

ground: Cognitive Systems Engineering (CSE). CSE adopts a triadic approach to human-machine 

interaction where the design emphasis is first and foremost put on the work environment in which 

agents operate and activities take place – see Figure 14, where EID puts the emphasis on transparency 

by visualizing the constraints on activities, whereas JCF focuses on the execution and planning of 

activities (between elements). The work environment describes the boundaries for actions governed 

by physical laws, intentional principles, and processes. It essentially defines a safe envelope within 

which actions can take place, initially irrespective of who is executing the actions (e.g., human or 

automated agents). At later (design and analysis) stages, agent-specific constraints are included (e.g., 

capabilities and limitations of both human operators and machines).  

 

FIGURE 14 – TRIADIC APPROACH TO HUMAN-MACHINE INTERACTION. 

Given the shared CSE common ground, JCF’s emphasis on team collaborations, and EID’s focus on 

transparency, JCF and EID are complementary. The result of the first integration effort is shown in 

Figure 15. EID visually reveals the constraints, relations, and action opportunities at all functional 

abstraction levels, and JCF modulates human-automation coordination on activity level by putting (a 

sequence of) activities on a timeline describing on what abstraction level the system needs to be 

perceived, warranted by situational demands. In other words, EID prescribes what information should 

be portrayed and how, whereas JCF provides guidance on when to show information and how that 
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links to specific activities (e.g., perceiving system information, formulating a decision, performing an 

action, among others). In this figure, D represents a decision point, AL action leverage, and PC a 

perception point. PC represents the level of presenting information, e.g., in the figure, the status of 

the grid. A decision is, in this case, on the value level, e.g., the operator needs to decide on prioritizing 

serving customers or managing an overload. In this particular example, action leverage is on the plan 

level – this system has a means for describing a plan that can then be executed for the operator.   

Consider the energy domain related to Figure 15:  1 Physical is, e.g., breakers, lines, and their status. 2 

Implementation is, e.g., limits on performance such as voltage or current limits when operating a 

specific breaker. 3 Generic is, for instance, a plan for solving an overload. 4 Value represents trade-offs 

or limits; for instance, the need to serve/inform customers versus the need to resolve an overload can 

be defined by a specific voltage limit number. 5 Goals represent what needs to be achieved, such as 

having a backup plan for possible forthcoming issues in the grid, serving customers, and avoiding 

overloads by looking ahead. 6 Framing represents what is going on, on an overarching level, to manage 

a power grid, but specifically, what goes on in that management right now or in the future to be 

managed (e.g., an overload). 

On the one hand, an AI that focuses on informing the operator would add perception leverage at higher 

levels and between levels. On the other hand, an AI that focuses on automating tasks would add action 

leverage at higher levels and between levels. An AI that is well-aligned either has Decisions, Action 

Leverage, and Perceptible Content on the same level or clear links between the levels so that relations 

between what is seen and what needs to be decided and done become clear.  

 

FIGURE 15 – MERGER OF JCF AND EID ON A FUNCTIONAL LEVEL. 

3.2.1.8.2 AI4REALNET SCENARIOS 

In AI4REALNET, three human-AI teamwork configurations are considered: 1) AI-assisted human control 

(human in control), 2) joint human-AI decision-making (including co-learning), and 3) autonomous AI 

(human as supervisor). In cognitive engineering, these scenarios are embedded in the notion of “stages 

and levels of automation” (see Figure 16 below). At each stage, the levels of automation consider the 

division of roles and responsibilities between human and machine, and the delegation between the 

two, of both autonomy (i.e., how independently the system is permitted to initiate system changes) 
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and authority (i.e., the level of automation capability available to the system). The three AI4REALNET 

scenarios can be formulated in terms of the following stages of automation: 

1. AI-assisted human control: AI features high levels of automation in information acquisition, 

information integration, and possibly decision selection. Action implementation is fully 

allocated to the human operator. A practical example is where AI directs humans' attention 

to important system information, integrates it in intuitive and human-friendly ways, and offers 

(a set of) directions where good decisions should be made. 

2. Joint human-AI decision-making: AI and the human operator can both independently and 

autonomously observe information, make decisions, and undertake actions. In this 

configuration, bi-directional human-AI communication is required to ensure that both agents 

are aware of who is doing what, when, and how. A practical example is where the AI and 

human operator are working in parallel on completing a control task and, by observing each 

other’s behavior, can learn from each other. For co-learning, it may be necessary to consider 

lower levels of automation at the action implementation stage, where the AI provides specific 

advisories that the human can accept, reject, or modify.  This can be related to the project 

goals as follows, e.g.: 

a. 1) the AI system could adapt continually to human preferences by analyzing  

i. (1a) explicit corrections made to its decisions, and 1b) implicit observations 

from the human’s decision-making through his/her interaction with the user 

interface. Examining Figure 2, the ability to carry out corrections by a human 

to make observations, and the ease of interpreting them by the AI, depend 

on the levels of interaction versus decision-making of the operator and AI.  

ii. (1d) typical preferences of the human operator in multi-objective problems. 

For instance, regarding alternative plans (level 3), or priorities (level 4). 

3. Autonomous AI: AI operates at the highest automation level at each stage, and the human 

operator needs to supervise the AI’s behavior. Ideally, human operators do not need to step 

in, but in case of system faults, the human-AI system must fallback to lower automation levels 

and stages that allow human interventions.  

It is important to note that choosing the right levels and stages of automation is warranted by 

operational contexts, situational demands, and capabilities (and limitations) of human and automated 

agents. As such, a “one-size-fits-all” distribution of functions and tasks does not exist and will need to 

be re-considered per application domain and/or operational scenarios.  
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FIGURE 16 – STAGES AND LEVELS OF AUTOMATION MODELLED AFTER HUMAN INFORMATION PROCESSING 

STEPS (PARASURAMAN ET AL., 2000). 

In Figure 16, four activities can be seen that are related to the interface information described in Figure 

15. The first step, IA relates to using perceptible content. In JCF, this corresponds to a perception point, 

P, in the operator process of information pick-up and use. The second stage, information integration, 

has to do with preparing the information so that it matches what is needed for decision selection. For 

instance, it can be presented on a different abstraction level, matching what the operator needs. The 

third step, decision selection, matches the action leverage in Figure 15 and, when carried out, 

represents a decision point (D) in JCF. The third part, action implementation, corresponds to an action 

leverage in Figure 15 and to an action point (A) in JCF.  

In Figure 16, we also see an arrow, going from high to low, denoting a concept of “level of automation” 

(LOA) within a stage of automation. The LOA denotes how independently an operator or an automated 

system works with that information. The extremes (high/low) usually denote fully manual or fully 

automated. In Figure 16, the important point is that the LOA can differ regarding these four stages of 

completing a cycle of gaining information and acting on it. Various academic proposals on LOA have 

been presented, and moreover, applied fields have their own LOAs.  The three domains in AI4REALNET 

can choose to use an application-field-specific LOA or a generic one from academia. Using a generic 

LOA facilitates cross-domain comparisons.  

3.2.1.8.3 GENERIC OPERATIONAL EXAMPLE 

To illustrate the combination of JCF and EID, consider Figure 17 showing an abstract state-action space 

of a generic planning problem where the goal is to bring a system from an initial state toward a desired 

target state. Generally, safe and unsafe actions within a planning problem are bounded by causal laws 

and intentional principles that are independent of any particular agent that can execute actions. 

Human agents typically “satisfice” by performing safe actions to reach target states, but human actions 

are seldom optimal. In contrast, automated agents aim to “optimize” by taking the shortest possible 

route toward the target state. However, automation may have a limited operational envelope for 

executing the shortest route, requiring human operators to oversee the automation’s functioning, 

anticipate when it reaches its boundary and timely take over control when that boundary is crossed. 

On the other hand, humans can also collaborate with automation, for example, by taking the initiative 

and ‘hand over’ a task to automation when the system state is within the automation’s operational 
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envelope. Note that automation can be classical, rule-based automation, or AI-based learning 

automation. For rule-based automation, the operational envelope is often fixed, whereas the envelope 

for learning-based automation can adapt by learning from (past and new) experiences (e.g., human 

actions, historical data, etc.).  

Traditionally, in EID, the emphasis lies on discovering and portraying operational envelopes governed 

and bounded by laws of physics. Within an ATM perspective, this relates to, for instance, the turn and 

climb performances of an aircraft and how certain physical objects (e.g., other aircraft) may pose 

restrictions (or obstacles) within state-action spaces. Central in EID is Rasmussen’s Abstraction 

Hierarchy (AH) – an actor-independent and activity-independent functional map that describes the 

overall system at different abstraction levels, ranging from the system’s functional purpose to its 

physical form. The AH typically specifies the content and structure of an interface, and the goal is to 

portray the AH information to transform a cognitive task into a perceptual task.   

In general, portraying system envelopes does not dictate a specific course of action but empowers the 

human operator to take any action as long as it does not violate the constraints. When human 

operators need to collaborate with an automated agent that operates in the same work environment 

(and thus is bounded by the same natural laws), insights into the automation’s operational envelope 

become important, as well as coordinating activities between agents (as illustrated in Figure 17). In 

this regard, JCF complements EID by describing and analyzing sequences of activities/actions on a 

timeline, at what abstraction level agents (need to) perceive system information to coordinate 

activities/actions, and what control authority each agent (needs to) has. Such information is crucial in 

analyzing the system's stability in terms of patterns in human-automation interaction. 

 

FIGURE 17 – ABSTRACT STATE-ACTION SPACE DESCRIBING A GENERIC PLANNING PROBLEM WHERE HUMANS 

AND AUTOMATION CAN COLLABORATE (IN SERIAL OR PARALLEL) TO BRING THE SYSTEM FROM AN INITIAL 

STATE TOWARD A SAFE TARGET STATE (VAN PAASSEN ET AL., 2018). 

To understand how to use the JCF tools in analyzing human-automation interaction patterns on the 

activity level, consider again Figure 16, which presents an abstract set of situations encompassing 

teamwork where humans and automation can work either in serial or parallel. When humans and 
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automation work together in parallel, scenario ❶ in Figure 17 represents the situation where humans 

are in full control, whereas scenario ❷ represents the situation where the human must monitor the 

automation that can take optimized actions. When working together in serial, the automation may 

provide optimized recommendations that a human needs to inspect and evaluate, consequently 

accepting, revising, or rejecting the automated advice. After rejecting the advice, the human becomes 

responsible for formulating and executing an alternative action. Other teamwork organizations may 

involve coordinating “handovers” ❸ and “take-overs” ❹ between agents. For example, the human 

could bring the system to a desired target state by formulating a plan but hand over the execution of 

that plan to automation (❸). Vice versa, the automation could also formulate a (partial) optimized 

plan but hand over the execution of that plan to the human (❹). Note that scenario ❹ could also 

represent a situation where automation is not able to bring the system to the desired state (e.g., due 

to unpredictable weather conditions that fall outside the automation’s operational envelope), 

requiring the human operator to take over control. 

While EID helps in specifying what information needs to be shown and findings ways to show that 

information, each scenario described above has an impact on the allocation of control authority and 

autonomy between agents, how activities are or should be coordinated, and when what type of 

information is or needs to be accessed. The JCF provides two tools for describing this: The Level of 

Autonomy in Cognitive Control (LACC) – Level of Automation (LOA) matrix and the JCF-Score. The main 

advantage of this is that it facilitates cross-domain comparisons between the AI4REALNET cases. This 

also provides a backdrop for discussing the generalizability of solutions across cases.  

The JCF offers a way to systemically describe stages of automation and link them to information 

requirements found at various functional abstraction levels using the LACC-LOA matrix, see Figure 18 

(which is just an example, many variations and options are possible in AI4REALNET). Note that in the 

conditional automation case of this figure, if the human plans and optimizes, it becomes identical to 

the scenario ❶ case – but there is a distinction. In scenarios ❷ and ❸, in this figure, the monitoring 

task is an added human activity that is not present in scenario ❶. Thus, scenario ❶ is within one 

operational envelope, scenario ❷ within another, and scenarios ❸ and ❹, cross the envelope 

borders.  
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FIGURE 18 – LACC-LOA MATRIX FOR THE EXAMPLE IN FIGURE 17. 

In Figure 19, the temporal execution of scenario ❸ can be seen in the JCF score notation. The Score 

has two main processes: the bottom is human-in-control, and the top is automation-in-control. It has 

a tentative temporal distribution (to be empirically set for any case that uses this pattern) on the 

horizontal axis. On the vertical axis, the numbers 1 – 6 represent the level of abstraction, originating 

from EID, at which information needs to be accessed (e.g., one typically represents the physical form, 

related to the topology of objects and their status). In the case of an aviation example, the activity 

pattern first starts with an observation of aircraft status and destination, then recognizing that a plan 

is needed. Optimization needs are decided, and a plan is made and entered into the system by the 

human. Note that this same problem may occur in the energy domain, where an overload status would 

instead be observed, and grid optimization needs would be decided, and a human could enter a plan 

for resolution. When the plan has been entered, the automation observes this and gives guidance to 

the execution layer below (e.g., regarding the timing of actions), and then the automation implements 

this guidance. In the aviation case, it gives clearances; in the grid case, it operates switches; in the rail 

case, it operates railway lights and rail switches. 

It strips away the form of interactions but describes the content and LACC level of interactions over 

time. The exact timings are an empirical question; this score describes a tentative case and roughly 

denotes the order of interactions, as well as the important crossing between human and automated 

work. The timings can also be designed for a particular domain – timings that must later be empirically 

validated.  
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FIGURE 19 – JCF SCORE FOR SCENARIO ❸ 

3.2.2 AI AGENT AND DECISION MAKING 

AI-based decision-making is increasingly transforming the landscape of human-AI collaboration, 

offering unprecedented capabilities in processing complex data, identifying patterns, and generating 

insights that surpass human cognitive limits. In the context of human-AI decision-making, AI systems 

can augment human judgment by providing data-driven recommendations, enhancing efficiency, and 

reducing bias in critical decisions. However, this synergy also brings challenges, including the need for 

transparency, trust, and ethical considerations to ensure that AI supports, rather than undermines, 

human autonomy and values. Balancing the strengths of AI with human intuition and expertise is 

essential to harness the full potential of AI-based decision-making in a responsible and effective 

manner. The objective of this chapter is firstly to elaborate on the different characteristics that AI-

based models should possess for their integration into the AI4RREALNET framework. This also implies 

that these characteristics should allow efficient interactions between AI and Human decision-makers 

in various situations and modes of interaction introduced earlier. Additionally, some methodological 

and algorithmic aspects of AI-based models are introduced.  
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3.2.2.1 CHARACTERISTICS OF AI-BASED DECISION MODELS 

3.2.2.1.1 ROBUSTNESS, RELIABILITY AND RESILIENCE 

Reliability in the context of AI and ML systems simply refers to the basic ability of the model/algorithm 

to perform as intended over a specified time frame under specific conditions, ISO/IEC TS 5723:2022. 

On the other hand, robustness goes beyond this standard situation to consider the ability of a system 

to maintain its level of performance under a variety of circumstances, ISO/IEC TS 5723:2022. When 

considering AI models, robustness can be categorized into two types: algorithmic robustness, 

pertaining to the sensitivity of the learning algorithm to perturbations in its training dataset, and model 

robustness, which describes how a trained model reacts to perturbations in the input data. In a final 

step, resilience can be considered the robustness of the AI model with regard to security threats. In 

other words, resilience constitutes the ability of an AI system to prevent, respond to, and recover from 

adversarial attacks.  

In the academic literature, the verification of AI/ML-based systems has predominantly considered 

computer vision problems with artificial neural networks of different architectures. According to a 

recent literature review by (Ilahi et al., 2021), the number of publications and methodologies that study 

the impact of adversarial attacks in deep learning algorithms that do not use images as inputs is low. 

For RL, the authors defined four categories of adversarial attacks targeting 1) state space, 2) reward 

function, 3) action space, and 4) model space. In supervised and unsupervised learning, type (1) is 

‘input space’ instead of ‘state space’, type (3) is ‘model output’ instead of ‘action space’, and (4) applies 

to any learning paradigm.  

For critical infrastructures and the six UCs of the AI4REALNET project, the risk qualitative assessment 

of Table 11, based on the dimensions of ETSI GR SAI15 001, can be applied to identify where the focus 

should be placed in terms of adversarial or natural perturbations. 

 Attack targeting/Failure on 

 Model space Reward function Action space State space 

Magnitude 

This can lead to grid outage events, congestions (delays) in the railway network and ATC spaces, non-optimal 

economic control solutions, or high carbon emissions (e.g., excessive curtailment of renewable generation), 

with monetary and reputation loss and a negative impact on the economy and comfort levels. 

Duration 

Reward functions and models are 

generally stored and operated in highly 

cyber-secure Information Technology 

(IT) systems. In the event of an attack, 

the previously trained model could be 

quickly restored. 

Associated with the 

Operational Technology (OT) 

systems, which follow high 

cybersecurity and reliability 

standards. Moreover, a lack of 

knowledge about network 

topology and parameters 

makes attack duration 

difficult. 

Data-driven models are often 

vulnerable to small 

imperceptible perturbations 

to the input data (Goodfellow 

et al., 2014). Events such as 

missing or erroneous data 

can be common in real-world 

networks. 

 
15 Securing Artificial Intelligence (SAI). AI Threat Ontology. ETSI GR SAI 001 V1.1.1 (2022-01). [Online] 

https://www.etsi.org/deliver/etsi_gr/SAI/001_099/001/01.01.01_60/gr_SAI001v010101p.pdf 

 

https://www.etsi.org/deliver/etsi_gr/SAI/001_099/001/01.01.01_60/gr_SAI001v010101p.pdf
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 Attack targeting/Failure on 

 Model space Reward function Action space State space 

Scope 
National and regional impact, such as overloaded power lines, cascading failures, load shedding, and train 

and flight delays. 

Severity 
Human operators must decide without AI assistance or an autonomous AI system (transfer of control to 

human). Decrease in trust over AI. 

Response 

Previously trained models could be 

quickly restored. Model training is done 

in a secure and controlled digital 

environment, and model retraining is 

possible. 

Model replacement or re-

training does not solve the 

problem. During operation, it 

is primarily a cybersecurity 

issue. Model training is done 

in a secure and controlled 

digital environment (or twin).  

Model re-training is not 

possible during operation. 

Model replacement does not 

solve the problem. 

TABLE 11 – AN EXAMPLE OF RISK QUALITATIVE ASSESSMENT OF THE UC BASED ON THE DIMENSIONS OF ETSI 

GR SAI 

In the critical network infrastructure context, the focus is on perturbations in the state/input space 

under natural or adversarial changes in the observations. Note that if the digital environments, or 

twins, accurately emulate operational scenarios of real-world networks and events, the focus would 

be on normally trained AI-based systems and controllers, referred to as ‘test-time’ by (Behzadan and 

Munir, 2017). However, changes in the concept, data, external systems, or software pipeline can result 

in out-of-domain data and/or data drift that may significantly decrease the AI system’s performance.  

Evaluating the robustness, reliability, and resilience of AI systems during training and testing time is 

paramount in critical infrastructures. Consequently, a formal definition of these concepts is presented 

in the following, derived from harmonizing current AI taxonomy harmonization, standards, and 

academic literature. 

Robustness 

The robustness of an AI system encompasses both its technical and social perspectives (EU-U.S. 

Terminology and Taxonomy for Artificial Intelligence16).  

Technical robustness is a system’s ability to maintain its performance level under natural or adversarial 

perturbations. It can be local (specified with respect to a sample input) or global (guarantees that hold 

deterministically over all possible inputs), according to ISO/IEC 24029-2. Note that considering the 

complexity of the systems at hand in AI4REALNET, local robustness is easier to specify and verify. This 

ability can be evaluated using two methods. The first utilizes the sensitivity property (ISO/IEC 24029-

2) that measures the extent to which the output of the AI system or the reward/loss function varies 

when its inputs are changed, where metrics such as output/reward variance can be used. In the second 

method, an adversarial agent applies perturbations to the AI system, replicating natural and 

intentional scenarios (which can be imperceptible perturbations), where the difference between the 

total rewards/loss obtained with the unperturbed and perturbed systems is a potential metric for 

robustness. The adversarial agent can also be used to quantify the sensitivity property. The range of 

 
16 EU-U.S. Terminology and Taxonomy for Artificial Intelligence. First Edition. [Online] https://digital-strategy.ec.europa.eu/en/library/eu-

us-terminology-and-taxonomy-artificial-intelligence 

https://digital-strategy.ec.europa.eu/en/library/eu-us-terminology-and-taxonomy-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/eu-us-terminology-and-taxonomy-artificial-intelligence
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change in the output (action space) can serve as a metric for the technical robustness of the system, 

for example by assessing whether a particular decision holds for input variation (noise, missing data) 

in the same context. Furthermore, during training-time, the magnitude of the reward/loss function 

deterioration can be used to measure robustness (Behzadan and Munir, 2017). Stress tests with these 

metrics are necessary for different perturbation probabilities, a maximum number of perturbations or 

a perturbation budget. This should be properly crafted in the adversarial agent reward function. Finally, 

the detection of out-of-domain data/data drift differs from technical robustness assessment to 

external perturbations or events. It is inherent to the model and learning mechanisms. For instance, 

the use of online learning changes the AI system’s behavior, which can also change its robustness (in a 

positive or negative direction). This also means that test-time robustness monitoring is needed on a 

regular basis for AI systems that use online learning.   

Social robustness should ensure that the AI system duly considers the context and environment in 

which it operates. The ALTAI framework can guide end-users in this assessment and lead to new 

functional and non-functional requirements. Moreover, in the AI4REALNET concept, digital 

environments play an important role by simulating the impact of a perturbed AI system with KPIs of 

social relevance, e.g., carbon emissions reduction of the power grid (see the KPI list in section 2.3). 

Reliability 

According to the EU-U.S. Terminology and Taxonomy for AI, “an AI system is said to be reliable if it 

behaves as expected, even for novel inputs on which it has not been trained or tested earlier”. This 

definition is strongly related to out-of-domain data. In other words, this means that the AI system 

should perform similarly on any test sets/periods if they are from the same distribution. This is closely 

related to the concept of generalization, as discussed in the section 3.2.2.1.4.  

In contrast to robustness, which considers the influence on the performance of AI system operating 

context (e.g., natural or intentional perturbations, faults in the subsystems such as forecasting 

functions), reliability focuses on consistent performance aligned with the underlying data distribution 

in standard operating environments (Zissis, 2019). Estimation of epistemic uncertainty (discussed in 

section 3.2.2.1.6) provide valuable information, correlating model performance with the level of 

uncertainty. Models with better performance in areas with high epistemic uncertainty can be 

considered more reliable. 

Resilience 

Resilience is the ability of an AI system to prepare for and adapt to changing conditions and withstand 

and recover (i.e., return to a “normal” state) rapidly from natural or adversarial perturbations or 

unexpected changes17 (EU-U.S. Terminology and Taxonomy for AI). Here, it is important to highlight 

the notion of recovery in resilience. 

Its quantification is related to the magnitude and/or duration of reward/loss function performance 

degradation compared to an unperturbed system for the same context. Figure 20 depicts a conceptual 

definition of the resilience quantification for a reward function. In this scheme, resilience can be 

quantified by a) the grey area between the reward curves of the unperturbed and perturbed AI system, 

 
17 According to NIST AI 100-1, “security and resilience are related but distinct characteristics. While resilience is the ability to return to normal 

function after an unexpected adverse event, security includes resilience but also encompasses protocols to avoid, protect against, respond to, 
or recover from attacks. Resilience relates to robustness and goes beyond the provenance of the data to encompass unexpected or adversarial 
use (or abuse or misuse) of the model or data”. 
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b) minimum reward in the degradation state and maximum reward in the restorative state, and c) 

duration of the degradation and restorative stages. These metrics should be computed for different 

probability levels of the perturbations or by defining a maximum number of perturbations or a 

perturbation budget.   

 

FIGURE 20 – CONCEPT OF RESILIENCE QUANTIFICATION IN TRAINING-TIME AND TEST-TIME PHASE 

3.2.2.1.2 INTERPRETABILITY AND EXPLAINABILITY 

Explainability measures the capability of a human user to understand how models make predictions or 

decisions, where the model’s transparency is a way to support explainability (Miller, 2023).  According 

to (Molnar, 2020), explainability is contextualized by a specific input, and it often requires additional 

information, which is not generally generated by the decision model. XAI techniques refer to the set 

of methods that aim to generate local explanations for black-box model’s, e.g., Artificial Neural 

Networks (ANNs) predictions. 

Explainability is crucial in decision-making as it fosters trust and acceptance of AI models by human 

users (Gunning & Aha, 2019). In RL, explainability addresses the challenge of understanding the long-

term impact of a certain decision, a task that humans find difficult to grasp as they tend to perceive 

the immediate reward to outweigh future rewards, as detailed by (Loewenstein & Elster, 1992). 

As deep ANNs have advanced, the field of RL has undergone a significant transformation. The shift 

from simpler learning representations to ANNs has empowered AI agents to tackle tasks that were 

otherwise not addressable. However, this transition led to these convoluted models being treated as 

black boxes. Consequently, there is an urge to develop methods that can bridge the gap between 

human understanding and AI decision-making, ensuring that decisions made by RL agents are both 

transparent and trustworthy for users, as highlighted in (Li, 2017). The lack of explainability and 

transparency often hampers the deployment of RL in real-world applications. 

For a given decision, there are often multiple plausible explanations. The authors of (Heuillet et al., 

2021) suggest tailoring explanations to the targeted audience and its goal. Therefore, the AI agent 

developed within the project should support multiple means of explanation to accommodate the 

different actors who may be interested in an explanation. These actors range from the operators, who 

interact with the system, to regulatory agents. The latter comprises organizations and agencies 

responsible for ensuring that the system is compliant with the standard defined for the addressed 

domain. 
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Given the targeted domains of critical infrastructure, explainability plays a pivotal role in guaranteeing 

that an AI agent does not pose new threats. As an example, when AI is deployed as an assistant to 

humans, an operator may ignore the received suggestion that is not fully understood. As a result, a 

well-explained sub-optimal decision might be preferred over a superior option that lacks a clear 

explanation. 

Among the comprehensive set of KPIs, requirements, and metrics employed across the identified UCs 

(see section 2.3), those related to human trust and acceptance are the most relevant to the topic of 

explainability. In addition, it is crucial that the computation time required to formulate an explanation, 

along with the processing time a human requires to decode and understand it, do not delay the 

decision-making. Finally, explanations should be assessed for fidelity, which measures the accuracy of 

an explanation in representing the underlying decision-making process, contextualized by the current 

input. 

To ensure a thorough evaluation, (Vouros, 2022) proposes a set of additional human-related metrics 

evaluating the interaction between a human and the explanation. These metrics, are reflected in the 

broader list of KPIs for each UC in Section 2.3, focus on the effectiveness of the explanation from a 

user’s perspective. The metrics relevant to explainability include: 

• Comprehensibility: assessing the capacity of a human to understand an explanation. 

• Preferability: estimating the relevance of an explanation given to the user. 

• Cognitive load: estimating the cognitive effort required by a human to appreciate and comprehend 

the provided explanation. 

• Actionability: assessing the utility of an explanation by capturing how well an explanation enables 

end-users to make informed decisions. 

Considering these metrics from an early stage of development allows for the design of a human-

friendly AI, where humans can be in control as it enables users to understand the system’s decision. 

3.2.2.1.3 TRACEABILITY AND AUDITABILITY 

Auditability consists of a thorough analysis of data, algorithms, and design processes to ensure 

alignment with the desired objectives, standards, and legal and technical requirements, such as those 

outlined by the European Commission (EC, 2024). This concept is pivotal in building human trust in AI 

systems.  One might argue that, when deploying AI/ML into real-world systems, auditability is as 

important as model performance. 

To ensure auditability, a continuous process that evolves throughout the entire lifecycle of the AI 

system is required. Significant updates to data, architecture, or system design (Markov Decision 

Process – MDP – for an RL application) require a careful re-evaluation of auditability. Logging and 

tracing from an early stage of the AI system design and development are essential to ensure 

auditability. These mechanisms ensure the correct recording of any meaningful and relevant insight 

that may be essential to ensure trust in the AI system from human users. 

In the context of software development, traceability refers to the process of establishing a clear and 

direct connection between the stakeholders’ requirements and the product developed18. When 

applied to AI/ML systems, this connection covers the design elements, code implementation, test 

 
18 Traceability. https://en.wikipedia.org/wiki/Traceability. Accessed: 3rd April 2024. 

https://en.wikipedia.org/wiki/Traceability
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scenarios, and data used to train the system. To ensure continuous traceability of RL in human-

centered AI, the human-machine interaction, along with the corresponding context, must be logged to 

trace the human influence in future decisions.  

In the AI4REALNET project, across the six UCs, auditability and traceability have a three-fold goal. 

Firstly, in such critical domains, traceability and auditability are essential to guarantee that the human 

is in control and the network can be safely operated. In the context of RL, this means implementing 

automated controls to detect changes in any MDP element, such as observation or action space. These 

controls guarantee that the task addressed remains consistent, guaranteeing reproducibility under the 

same circumstances and preventing the policy from being misled by external influences. Secondly, 

auditability and traceability are crucial in maintaining control and safety, ensuring regulatory 

compliance, and allowing for effective monitoring and inspection of both AI recommendations and 

human inputs. Thirdly, auditability and traceability should work in two ways: to trace AI 

recommendations and human inputs, and to allow for quantification of the human influence over the 

AI-powered decision system. Finally, auditability and traceability are helpful for identifying and 

investigating performance degradation. By pinpointing the exact causes of issues, these processes 

significantly enhance the system's maintainability. 

3.2.2.1.4 GENERALIZATION 

Generalization, in the context of AI/ML, is the ability of a trained model to perform well on previously 

unseen data that are derived from the same distribution as the data explored during the training phase. 

For RL, (Nichol et al., 2018) consider an agent to generalize well when it can adapt to previously 

unencountered situations drawn from the same MDP explored during the training phase, e.g., different 

levels of a game. Nonetheless, (Cobbe et al., 2019) claim that generalization in RL is still an open 

challenge as state-of-the-art algorithms are generally trained and evaluated within a limited set of 

tasks.  

The generalization problem in RL may be related to the problem of overfitting, and, as argued by (Irpan, 

2018), this may be due to the policy being optimized based on the reward signal. Generally, in RL, the 

agent's behavior is shaped by a reward signal, which is often formulated ad-hoc for specific scenarios. 

Consequently, if the reward formulation is narrowly tailored to one case, the resulting policy may 

underperform in other scenarios. 

(Zhang et al., 2018) suggests that generalization in RL can be improved by letting the agent visit 

multiple diverse instances during the training phase. Nevertheless, a small perturbation of the 

environment may still hinder the agent's capabilities to accomplish the task.  

The problem of generalization in RL should be addressed on three different levels:  

• Domain diversity: An agent must visit a variety of environment configurations to promote the 

exploration of the state-action space and to lower the chances that an agent will stick to a 

restricted sequence of actions leading to the fulfillment of the goal by exploiting the 

determinism of the environment.  

• Exploration-exploitation trade-off: An agent must balance exploration and exploitation to 

prevent overfitting to certain cases or local optimum.  

• Experience diversity: The learning model underneath the agent must be optimized on various 

experiences to prevent biases introduced by the optimization on a restricted set of data 

(Olteanu et al., 2019). 
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To prevent an RL model from overfitting to a narrow area of the state-action space, prior work has 

focused on improving the exploration phase of RL to improve the model's robustness. Curiosity-driven 

methods consist of augmenting the reward signal with a value that encourages exploration of yet 

unknown sub-areas of the observation space (Pathak et al., 2017; Li et al., 2020). 

In the context of the AI4REALNET project, we have established a set of requirements to ensure that 

the AI model is robust and capable of being generalized across diverse scenarios. Where possible, the 

trained model should maintain its performance in unseen and out-of-distribution scenarios, such as 

areas of observation and action space not visited during training. If this is not feasible, the AI agent 

must alert the operator about its uncertainty as outlined in section 3.2.2.2.2. The generalization 

capability of a model could be measured by observing the change in the reward/loss of the model 

when visiting novel data.  

3.2.2.1.5 SCALABILITY 

In AI, scalability is the ability of a model to adapt to different workloads, similar to the algorithm's 

scalability as outlined by (Paliouras, 1993; Ulanov et al., 2017), where they assess the scalability of an 

AI/ML distributed model by measuring the empirical speedup obtained from a system while increasing 

the computational resources. 

In each of the six UCs of the AI4REALNET project, an RL-powered AI agent will be used to either provide 

recommendations to a human operator or in a fully autonomous manner. As a result, the scalability 

challenge is two-fold. On one hand, from an engineering perspective, an AI decision-making model 

should scale based on the hardware availability. On the other hand, from a theoretical RL perspective, 

the system's effectiveness and performance should not be compromised by the level of complexity 

given by the combinatorial nature of Multi-Agent RL (MARL) with an arbitrary number of agents 

(Hernandez-leal et al., 2019). In MARL, the decentralized decision-making process preserves the 

integrity of the MDP-based learning strategies even as the system scales. As an example, in the context 

of the Flatland digital environment defined by (Mohanty et al., 2020), the complexity grows 

exponentially with the deployment of additional trains on the rails and with the railway network 

expansions. Consequently, the system performance, measured through time elapsed for decision-

making and the model's accuracy, may be affected by the additional agents. 

The critical infrastructures addressed within the project generally require immediate intervention to 

keep the network in its normal operational status by addressing unforeseen critical situations that may 

arise. A decision from the human-AI team must be made in near real-time to prevent an issue's 

escalation, regardless of the scale of the problem or the complexity of the network. Consequently, it 

is crucial to consider the scalability constraint from an early stage of the design phase. The training and 

inference methods, along with the algorithms, must be designed to accommodate large and realistic 

scenarios.  This could be achieved through MARL by factorizing the learning process across multiple 

agents such that each agent can learn and make decisions simultaneously within a shared 

environment. 

3.2.2.1.6 UNCERTAINTY QUANTIFICATION 

Uncertainty quantification (UQ) is a critical component when integrating AI into decision-making 

processes for critical infrastructures. This approach involves systematically characterizing and 

managing the uncertainties inherent in both the AI models and the real-world data they process. 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

93 

In the context of human-AI interaction, UQ ensures that decisions made with the aid of AI are reliable 

and robust. There are several aspects to UQ: 

1. Model uncertainty (epistemic): AI models are not infallible. They are built on algorithms and 

data that might not always perfectly capture the complexities of the real world. UQ helps 

identify the confidence level of AI predictions, highlighting areas where the model's output is 

less certain. In the context of the human-in-the-loop pipeline, which will be used in the 

AI4REALNET framework for decision-making, the estimation of epistemic uncertainty may 

allow the AI agent to establish its level of confidence within an observed state.  

2. Data uncertainty (aleatoric): The data fed into AI systems often comes with its own 

uncertainties due to noise, incompleteness, or inaccuracies. In the context of the human-in-

the-loop pipeline, an environment should support the estimation for aleatoric uncertainty 

derived from an external source, such as weather conditions. UQ methods, such as 

probabilistic modeling, can quantify these uncertainties, providing a clearer picture of the 

data's reliability. 

3. Decision-making under uncertainty: For critical infrastructures, decisions must be made with 

an understanding of the potential risks and outcomes. UQ supports this by offering a 

probabilistic framework that can be used to evaluate different scenarios, helping human 

operators to make informed decisions even in the face of uncertainty. 

4. Human-AI collaboration: UQ fosters better collaboration between human decision-makers 

and AI systems. Providing transparency about uncertainties allows humans to apply their 

judgment effectively where the AI’s predictions might be uncertain or ambiguous. As an 

example, for the power grid use cases of the AI4REALNET project, the AI decision is augmented 

with confidence levels to enable the human to take an informed decision based on the 

limitations that are expressed through the confidence/uncertainty metrics. 

5. Resilience and reliability: Critical infrastructures need to be resilient to failures and reliable in 

their operation. UQ contributes to this by ensuring that AI systems are not only accurate but 

also aware of their limitations. This awareness can lead to more robust designs and operational 

strategies that account for potential uncertainties. 

In summary, UQ bridges the gap between human judgment and AI capabilities, ensuring that decisions 

made within critical infrastructures are not only data-driven but also cognizant of the inherent 

uncertainties. This leads to more resilient, reliable, and safe operational outcomes. UQ is receiving 

attention from standardization bodies, e.g., the German Deutsches Institut für Normung (DIN) recently 

developed general guidance and requirements for the development and use of methods for 

quantifying uncertainty in ML, DIN SPEC 9200519, where a potential follow-up international standard 

regarding UQ is currently under consideration by NA 043-01-42 GA of DIN.  

3.2.2.2 ALGORITHMIC ASPECTS OF AI-BASED MODELS 

3.2.2.2.1 KNOWLEDGE-ASSISTED AI 

Knowledge-assisted AI refers to an approach to AI that makes use of pre-existing knowledge, often in 

addition to data-driven elements. This thus often concerns hybrid approaches that combine learning 

 
19 

 Can be downloaded (in English) from: https://www.dinmedia.de/en/technical-rule/din-spec-92005/376619718 

https://www.dinmedia.de/en/technical-rule/din-spec-92005/376619718
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elements with human knowledge and cover approaches referred to as ‘neuro-symbolic’ (Van Harmelen 

et al., 2019), ‘hybrid,’ or ‘informed’ (Von Rueden et al., 2021) in the literature. This knowledge can 

come from various sources, e.g., an existing heuristic or factual knowledge such as symbolic rules or a 

physics equation. Knowledge-driven elements are strong at helping an AI approach generalize, 

especially where little data is available. On the other hand, the provided knowledge might not cover 

all possible scenarios, and data-driven elements can exploit training data to cover such gaps.  

The essential properties of knowledge-assisted methods are that they (1) can learn from data and (2) 

can take prior knowledge into account. Some authors consider that such knowledge should come from 

an independent source and be given by formal representations (Von Rueden et al., 2021). However, 

from a broader view, implicit representations of domain knowledge (such as an existing procedure or 

heuristic) can also be considered. Key elements by which methods for knowledge-assisted AI can be 

classified include the source of knowledge, the representation of knowledge, and the integration of 

knowledge (Von Rueden et al., 2021).  

The focus in many ‘knowledge-assisted approaches’ is not to add functionality but to increase the 

performance of functional components of the system, especially where available data is scarce and/or 

is not representative of the entire domain of interest. Furthermore, elements driven by, for example, 

logic-based or procedural knowledge tend to be more understandable to human users. Thus, systems 

including such elements might generalize more systematically and be more transparent and auditable 

than systems fully driven by (deep) ML models. 

Evaluation of knowledge-assisted approaches can take place in several ways. Primarily, the core task 

performance should be evaluated as measured by an objective function. In the context of AI4REALNET, 

it might specifically be interesting to consider performance both in ‘regular’ regimes as well as in 

‘abnormal’ regimes, such as during a system outage. Since less training data is available in these 

abnormal regimes, it can be hypothesized that the effect of adding a knowledge component is more 

prominent in such regimes. Where a system has functional components that provide explanations and 

transparency, the effect of including knowledge assistance on those components should also be 

evaluated. 

In the context of AI4REALNET, several sources of prior knowledge can be identified. For example, in 

the power networks and air traffic domains, the relevant physics equations are known well enough to 

be exploited in a possible solution. Furthermore, virtual simulators can be used as a (coarse) proxy for 

at least initial training when moving to physical systems. Such knowledge needs to be brought in an 

accessible format to allow developed approaches to be applied across domains. 

3.2.2.2.2 META-AWARENESS FOR AI ASSISTANTS 

The combination of the human operator with the AI assistant forms the human AI team, as phrased by 

(Endsley, 2023b). This team presents complementary facets. While AI systems based on ML can 

process large amounts of data and learn complex patterns, the human operator is much more capable 

of managing unexpected (e.g., where there is no historical data available) and edge situations. 

Therefore, the operator is always in charge of the system. Moreover, in general, ML-based systems 

lack a model of causation that is essential to predict future events, simulate potential actions, or 

generalize to new situations. Data-driven decision-making in evolving situations requires not only the 

perception of the current state of the environment but also the understanding of what can possibly 

happen or is likely to happen in the near future (Endsley, 2023a). In addition to aleatoric uncertainty, 
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which represents the inherent randomness of the environment, epistemic uncertainty (Hüllermeier 

and Waegeman, 2021; Charpentier et al., 2022) is also a crucial component of the system. 

An AI-based decision system should go beyond the current pattern-recognition paradigm provided by 

ML systems and be able to address, among others, the following requisites: 

• Learn quickly with as few episodes of failure as possible (Charpentier et al., 2022).  

• Flag anomalous environment states when it does not know what action to take or suggest 

(Charpentier et al., 2022).  

• Perform well in untrained situations (i.e., with reduced epistemic uncertainty) and manage 

aleatoric uncertainty as well as noisy data. As discussed in (Tomsett et al., 2020), information 

about uncertainty (uncertainty-awareness) can lead to improved trust calibration from 

humans in the AI model’s output in high-stakes decisions. The uncertainty can be presented 

either by probabilistic indices (e.g., standard deviation, inter-quantile range) or non-

probabilistic representations (e.g., confidence level).  

• Keep human operators informed of important changes in the managed system and external 

information without distracting them from their core tasks. 

• Provide timely feedback on performance and guidance on correcting team errors. 

Endsley introduced the concept of meaningful control (Endsley, 2023b), emphasizing the need for AI-

based systems to have a level of meta-awareness. This awareness enables them to recognize situations 

that exceed their capabilities and prompt them to seek human assistance. Consequently, effective 

mechanisms for transferring control to humans are essential. This requirement of meta-awareness can 

be found in the operation of critical infrastructures where AI assistants can be used to aid human 

manual actions. For instance, in the reinforcement learning competition described in (Marot et. al., 

2022a), one goal was to evaluate if an AI agent has the ability to send alarms to the operator ahead of 

time when the proposed actions are of low confidence and avoid a human out-of-the-loop scenario. 

On the other hand, the issue of over-alarming was a risk to positive human-agent interaction, and thus, 

an attention budget was considered. This framework was built to have high levels of credibility, 

reliability, and intimacy. 

Following these concepts and requirements, the AI4REALNET meta-awareness concept considers the 

following phases: 

The AI-based system observes and monitors the managed infrastructure (e.g., power network). 

Developing this functionality of the system will require incorporating domain expertise, software 

engineering, and AI/ML and data science expertise to implement automatic data and information 

extraction systems that will be used to refine and calibrate the data-driven models. The capacity to 

derive and represent contextual information (e.g., knowledge graphs, structural causal model) about 

the operating context is fundamental for the learning and awareness properties, as well as for human 

understanding of recommendations and performance (Palminteri and Lebreton, 2021). This will allow 

AI systems to capture knowledge about themselves and the environment. 

Anticipation and alert will be possible due to the predictive models refined from the system 

observation, as well as uncertainty quantification. This will allow us to forecast the workload of the 

managed system and the detection of anomalies and unexpected events. The combination of these 
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elements will allow us to predict the impact of the changes in the system environment and to detect 

and predict novel problems at different time scales during the managing operation period.  

In this phase, both aleatoric and epistemic uncertainty should be considered to alert the human 

operator about situations where the sampling efficiency during the model training or the 

generalization performance is low (i.e., the model is experiencing “unknown states”) or situations with 

high stochasticity (e.g., high uncertainty in weather forecasting) that lead to low confidence in the 

recommendations/decisions. In this situation, the option should be to transfer the control to the 

human and provide all the information necessary for the human to decide (Nylin et al., 2022). The 

complexity of an environment’s operating conditions and events can serve as exogenous information 

(Campos et al., 2024), helping the AI system become aware of its own capabilities and enhancing its 

ability to provide accurate recommendations. 

Figure 21 illustrates a prototype of a deferral mechanism that, following the nomenclature in (Bondi 

et al., 2022), learns to defer decision-making from the AI model to a human. This mechanism considers 

aleatoric and epistemic uncertainty, as well as the network context, and the rule-based system can 

also include a constraint related to the deferral rate (i.e., an acceptable level of human effort or the 

attention budget). This can be evaluated in real-time (i.e., for the current operating scenario) or 

predicted for the next lead-time where aleatoric uncertainty needs to be considered in the model. 

 

FIGURE 21 – PROTOTYPE SCHEMATIC OF A DEFERRAL MECHANISM THAT LEARNS TO DEFER DECISION-

MAKING FROM THE AI MODEL TO A HUMAN 

3.2.2.2.3 HUMAN-AI CO-LEARNING 

Work in the field of what this project refers to as “Co-Learning” can be found under many aliases, 

commonly a combination of “Human-AI” or “Human-Machine” with a suffix indicating the 

collaborative nature – “Teaming” or “Collaboration” under the most common. With recent advances 

in AI capabilities, research into the design of human-AI teams has gained momentum. First, discussions 

of how automated systems and humans will interact state that such systems must be perceived as 

individual and independent agents (Woods, 1996) and that autonomous agents must adhere to the 

principles of human-human collaboration (Rich and Sidner, 1997). Within the context of AI4REALNET, 
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we strive to achieve human-AI co-learning, which differentiates itself from existing research in that it 

aims to achieve continual and mutual learning in the human-AI team. It views the system holistically 

with the goal of exploiting strengths while mitigating weaknesses, thereby achieving performances 

superior to that which the agents could achieve individually.  

A preliminary design is proposed here for a co-learning AI agent based on a paper titled “Six Challenges 

for Human-AI Co-Learning” written by Van den Bosch et al. in 2019. The paper provides a detailed 

description of co-learning and a discussion of requirements and challenges, focusing primarily on the 

agent side. The authors propose six models that an agent must have and continually refine to achieve 

mutual learning in a human-AI team. More specifically, an agent requires taxonomy, team, task, self, 

“Theory-of-Mind,” and communication models to be capable of interacting with human agents in a 

manner that conforms with human cognition (Van den Bosch et al., 2019). An overview of the system 

described in the following section is given in Figure 22, where arrows display interaction and 

information flow. This concept is merely descriptive, providing only an overview of the functionalities 

such a co-learning-capable AI must have without concrete concepts for technical implementations.  

 

 

FIGURE 22 – DESCRIPTIVE SCHEMATIC OF A CO-LEARNING AI AGENT 

For any human team to function, a common language and a shared understanding of team dynamics 

is required. In the proposed system by (Van den Bosch et al. 2019), the interaction between human 

and artificial agents is managed by the human agent via the team model, which defines work 

agreements, team organization, hierarchy, task distribution, and delegation. The taxonomy model 

manages the shared language pertaining to concepts and relations important for a common 

understanding of the task. With a common taxonomy and the agent’s place in the team defined, it can 

begin to solve tasks. To do so, a task model is required, which is comprised of knowledge about the 
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task and the relations between states, actions, and outcomes, including solution strategies and 

representation of state knowledge. Two models exist that describe the inner states of the team 

members: the self-model, depicting the inner state of the artificial agent, and the “Theory of Mind”-

model, which covers knowledge about the inner state of other agents. Both models contain 

information about the goals, values, capabilities, resources, and intentions of the agents. The Theory-

of-Mind-model differentiates itself from the self-model in that the information can be provided 

directly by the human agent or inferred by the artificial agent through behavioral observation. It also 

considers aspects of emotion and personality.  

The knowledge of self and of others enables productive alignment and adaptation within the team, 

which occurs through the final model – the communication model, which is informed by the team and 

taxonomy model and exchanges information with the self- and Theory-of-Mind models. The sharing of 

information enables the AI agent to process human communication and send information using the 

defined vocabulary, under consideration of the human’s inner state, within the context of agreed-upon 

team dynamics while communicating its approach to the task as well as its own inner state. 

Communication of the inner state resulting from the self-model is of particular significance, given that 

it cannot be inferred from behavioral cues it would be in a human-human team (van den Bosch, 2019).  

3.2.2.2.4 MULTI-OBJECTIVE REINFORCEMENT LEARNING 

Multi-objective learning in the context of Human Preference 

A design strategy of multi-objective agents must begin with a discussion of the practicalities involved 

in training with multiple objectives and integrating human preferences. There are two steps involved 

in AI algorithm development: the training phase and the operation phase. In the training phase, a 

reward objective must be assumed to guide the training of the underlying parameters of the AI agent. 

In a multi-objective setting, this “total” reward 𝑅𝑡𝑜𝑡 is defined by a scalarization function 

𝑈(𝑅1,  𝑅2,   …  𝑅𝑛) of the individual objectives (Hayes et al., 2022). Assuming no human-machine 

interaction, this function U must be pre-defined at training time. An alternate solution would be to 

train an agent to determine the best solution under any mathematical combination of individual 

rewards, but this comes with the disadvantage of significantly increasing the complexity of the 

problem. 

During the operation phase of the AI algorithm, for instance, in a control room setting, the algorithm 

may suggest one or many solutions to an emerging problem for the operator to choose from. These 

solutions are ranked by the total reward 𝑅𝑡𝑜𝑡, and the individual rewards 𝑅1…𝑅𝑛 can also be 

calculated and presented individually to the human operator. When an experienced operator is 

presented with these solutions, they can select the solution that optimizes the total reward, or they 

may select a different solution based on intuition from their own experiences. This implies that the 

human operator’s preferences put a different weight on each individual reward, thus implying a 

different U-function (although this ideal U function may be unknowable and indeed inconsistent 

among operators). 

Ideally, a “feedback” step would collect the disagreements between the operator and the AI 

algorithm’s predefined reward U-function. The goal of this feedback step is to align the preferences of 

the AI algorithm’s U-function with those of the human operator. Mathematically, this entails finding a 

U-function that replicates the order of the preferences chosen by the operator. Subsequently, an AI 
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algorithm retrained using this ideal U-function will order the solutions in a way that exactly matches 

the ordering of the expert human operator. 

To achieve this, preference data of the human operator(s) would have to be collected over a wide 

range of scenarios. To improve the usefulness of this dataset, the operator could not simply choose 

the best action (out of, say, the 5 top choices that are suggested by the AI algorithm), but instead rank 

the actions from most to least desirable. Furthermore, cases in which the operator is indifferent to the 

choice between two actions should be noted as such to allow for the possibility that these actions lie 

on the “Pareto front” of the action space (Hayes et al., 2022). 

The limitation of this approach is that it may be impossible to find the optimal U-function that aligns 

the AI algorithm with human preferences. Indeed, developing the dataset alone may be problematic. 

A more realistic approach would be to develop a U-function using heuristic methods, in cooperation 

with human experts, that align with human and AI goals. 

The previous description explains, in essence, the goals of the co-learning phase. To proceed to a fully 

automated setting, the learned U-function should be considered sufficiently aligned with human 

expert preferences up to a given tolerance. Retrospective analysis in the fully automated setting can 

ensure that the automated AI is performing properly and can provide additional training data for 

further refinements of the AI agents. 

Roadmap for developing multi-objective AI Agents in co-learning scenarios 

Because the collection of human preference data is time-consuming and indeed requires an AI agent 

before proceeding, it is important to have a roadmap outlining the steps for achieving a multi-objective 

agent informed by human preferences. The outline below stresses that intermediate agents should be 

developed based on expert heuristics and, thus, should be highly effective agents even before the co-

learning step has been reached. In addition, transparency and explainability regarding the breakdown 

of the total reward as a composite of sub-objectives are emphasized. The roadmap is as follows: 

1) Identify the KPIs that should be converted into reward objectives in the context of RL. 

2) In the absence of human interaction data, develop a heuristic model for obtaining U, the single-

valued utility function. 

3) Interim solution: provide visualizations of objective scores (e.g., a spider chart), which facilitates 

the objectives of explainability and transparency since it gives useful information about the chosen 

action, e.g., if a reward is a composite of multiple reward values, it is more transparent to give a 

breakdown of the individual reward scores so that the operator can make a more informed 

decision. 

4) Develop a strategy for obtaining human preference data and record-keeping. 

5) Implement a full human-feedback model to improve the consistency of human and AI decisions 

(utility function). 

An example visualization of multi-objective reinforcement learning scores is depicted for the grid use 

case in Figure 23. In this scenario, each of the five objectives is intended to be minimized, and operators 

are presented with multiple plausible actions generated by the agent and their predicted scores on 

each metric. Recording the action preferred by the operator allows essential feedback for the 

improvement of the AI agent. Multiple instances of competing agents, trained to prefer different 

objectives, could also add variety to the set of possible actions. 
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FIGURE 23 – EXAMPLE OF MULTI-OBJECTIVE VISUALIZATION 

3.2.2.3 HYPERVISION 

Today’s supervision tooling is inherited from successive waves of IT implementation over the last 

decades: operator supervision over many screens and applications leaves the user the cognitive load 

to prioritize, organize, and link disparate displayed information and alarms before considering any 

decision or action.  

More variable and complex infrastructure dynamics – driven, for example, by energy transition on 

electric transmission systems – tend to increase the complexity of tooling: in such a context, 

supervision becomes impractical, with numerous and complex information to process and non-

integrated applications under heterogeneous formats. It contributes to the problem of information 

overload, which dilutes the operator’s attention. To be effective at continuous decision-making, it is 

often important to focus on the highest priority task at a time, using only the most relevant 

information. The sub-optimal design of human-machine interfaces and interactions has even been 

identified as a risk factor for human error in operations (Nachreiner et al., 2006). 
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FIGURE 24 – FROM SUPERVISION TO HYPERVISION 

 

FIGURE 25 – HYPERVISION IMPLEMENTATION 

In response to these challenges, the goal of Hypervision is to bring the right information at the right 

time to the right person while keeping track of user progress for each task (Marot et al., 2022b). From 

the operator’s point of view, Hypervision allows for synthesizing the necessary information and 

centralizing real-time business events in a single and unified interface supporting the decision-making 

process and prioritization of tasks to: 

• Understand the operating context, 

• Diagnose alerts, 

• Choose the implementation of solutions. 

Through a better prioritization and syncretization of events, Hypervision should allow for extending 

beyond real-time tasks and gaining a broader perspective to anticipate tasks to be completed or 

configured ahead of time thanks to forecast. By defining an adaptable trajectory, Hypervision shifts 

the focus from alarm monitoring to efficient task completion (see Figure 24). 

Hypervision is implemented by four distinct layers (see Figure 25): 

• Synthesis: This layer is connected to various existing online modules or tools and selects 

relevant information to use, 

• Formatting: Select the most relevant way of presenting the information (text, table, graph, 

etc.), 

• Rendering: Connect formatting and context (e.g., line overloads on a map) 

• User Interface: Addresses synthesis and prioritization needs, human-machine dialogue, 

collaboration, and decision-making capitalization. 

The Cockpit and Bidirectional Assistant (CAB) project aims to provide support in augmented decision-

making for complex steering systems. The objective of the CAB project, launched in July 2020 for a 

period of four years, is the development and prototyping of a bi-directional virtual assistant – open in 

terms of industrial applications – in which it will be possible to evaluate the forms of exchange between 

the Human expert and an AI that continuously learns both from the information flows received and 

from the decisions made by human. 
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The interface of the CAB project (see Figure 26) is an example of a hypervision interface framework. It 

is composed of various panels: 

• The context: It is the central panel of the interface and is where the environment and the 

context are visualized in real-time. The operator could monitor the different parts of the 

environment (power grid in this case) and the experience could be augmented using various 

offered functionalities (to zoom in on a specific area for example), 

• Timeline: The timeline panel provided at the bottom part of the user interface allows us to 

monitor the time steps and also to keep a trace of various events in history. That enables the 

operator for example to go to previous time steps and to deepen the analysis, 

• Alerts: The alerts panel located at the left part of the user interface shows the notifications 

about the context over time. These notifications could be related to the risks and events (for 

example the risk of overload on the power lines due to a disconnection), 

• Recommendations: The recommendation panel is located at the right side of the user interface 

which provides recommendations using an AI-based agent. The operator has the choice to use 

this recommendation or not based on the expertise level and the complexity of the risks to be 

cleared. 

 

FIGURE 26 – EXAMPLE OF HYPERVISION INTERFACE (CAB PROJECT20) 

The explanatory aspect of AI recommendations is central to the CAB project to give added value to the 

operator in their decision-making. The virtual assistant will be able to determine the profile of the 

operator and his cognitive workload level and adapt the information flows uploaded to the operator 

in order to manage a complex and/or atypical situation in the best conditions. 

OperatorFabric21 (see Figure 27) is another example of a Hypervision interface framework and 

interface that implements Rendering and User Interface layers. It regards the decision-making process 

as a task, represented by a digital card that is ordered by priority in a feed. When a card is selected, 

 
20 https://www.irt-systemx.fr/en/projets/cab/ 

21 LFEnergy. (2019, Jul.). Operator fabric: a smart assistant for system operators. [Online]. Available: https://opfab.github.io/  

https://www.irt-systemx.fr/en/projets/cab/
https://opfab.github.io/


AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

103 

the details of the card are displayed: information about the state of the process instance in the third-

party application that published it, available actions, etc. The card lifecycle can be composed of the 

following steps: 

• Automatic creation and notification to the operator based on forecasted alerts and contextual 

information with a preliminary diagnosis (or eventually with a procedure and configuration 

choices for execution), 

• Tag by the operator as representing a certain type of problem and objective, 

• Update (possibly automatically) and refinement as refreshed forecasts or new information 

come in, or manually edit by the operator (for example, in more unusual situations), 

• Recommendations for actions can be also added within the card (or the operator can propose 

other ones), 

• Selection of one given recommendation by the operator that will be considered as active,  

• Sharing across operators (based on tags, groups, organizational entities, processes, etc.) 

allowing for effective coordination. 

 

FIGURE 27 - EXAMPLE OF HYPERVISION INTERFACE (OPERATORFABRIC) 

A card with versioning eventually represents the full decision-making process, which can be analyzed 

step-by-step or backward. All cards can be displayed on timeline or agenda views that complement 

the card feed views by allowing the operator to see briefly the status of processes for a given period. 

As structured decision-making is applied to any field, Hypervision interface frameworks such as 

OperatorFabric can be used in the operation of different types of critical grid infrastructures; only the 

underlying information management remains domain-specific. 

3.2.3 HUMAN-AI INTERACTION AND SYSTEM DESIGN 

The system design level focuses on the description of the technical system while incorporating the 

perspectives of stakeholders of the system and the environment in which the system is intended to 

operate. To cope with the complex environment and tasks the system will operate in and execute, 

multiple viewpoints on the envisioned system are taken to derive both functional and non-functional 
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requirements and guide the development process. Specifically, the system design level described in 

the following focuses on three distinct views: The operational view captures characteristics of the 

intended use of the system in a real-world setting. A functional view analyzes the functions the system 

should be able to provide. Lastly, a logical architecture segments the system into logical units and a 

building block view outlining the technical structure of the system. 

Further, the AI-based operation of critical infrastructure–i.e., employing a system with a substantial 

degree of automation operating in an environment where high-impact decisions must be taken in real-

time–imposes particular quality demands. These demands concern functional suitability (the provided 

functions meet the need for a high degree), reliability (a specified performance level is maintained 

under specified conditions), and operability (understandable, learnable, and usable by and attractive 

to the user), as well as quality characteristics according to ISO 25010. Therefore, the system design 

level highlights and addresses the aspects of robustness, UQ, knowledge-assisted AI, human-AI co-

learning, explainability, and multi-objective RL in the second part of this section. 

While these initial views, definitions, and considerations outlined in this section play a crucial role in 

ensuring the system’s overall coherence and alignment between the different aspects during 

development, further work carried out during this project is intended to expand and refine the content 

represented in this section. 

To describe the conceptual framework, we choose the systemic representation based on three levels 

of views (as illustrated in Figure 28): the operational view, the functional view, and the logical (or 

process) view. 

 

FIGURE 28 – GENERAL VIEW OF THE METHODOLOGY OF THE CONCEPTUAL FRAMEWORK 

3.2.3.1 OPERATIONAL VIEW 

The operational view in system design is a perspective that focuses on how the system will be used, 

operated, and maintained in its real-world environment. It addresses the operational aspects of the 

system, including the interactions between users, systems, and external entities. 

3.2.3.1.1 STAKEHOLDERS DIAGRAM 

Operational view

- Stakeholders identification

- Environment diagram

Functional view
- Requirements analysis (functional/ non functional, 

generic/specefic) 

-Functional decomposition : what are the main 
functionalities of the AI4REALNET framework? 

Logical View 
-What is the process & modules of the 

system? 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

105 

In this subsection, we describe all the stakeholders who interact with the system. A stakeholder is an 

external system that influences or interacts with the system to be designed. A stakeholder can be a 

human, an organization, or a technical system. It directly or indirectly impacts the system to be 

designed. It expresses a need or imposes constraints on the system.  

 

FIGURE 29 – STAKEHOLDERS DIAGRAM  

As can be seen in Figure 29, the following stakeholders for AI-based critical infrastructure management 

were identified: 

• Data profiles: manipulate the data at different levels of the conceptual framework to design 

AI-based algorithms and to provide meaningful decision support. 

• Infrastructure supervisor: are individuals or entities responsible for overseeing the 

management, security, and operational efficiency of critical infrastructure systems. These 

supervisors ensure that the infrastructure operates smoothly, complies with regulations, and 

responds effectively to incidents or emergencies. 

• Operators: They are key stakeholders in critical infrastructures, responsible for the day-to-day 

functioning and management of these essential systems. Their role is vital to ensuring the 

smooth, secure, and reliable operation of critical infrastructure services and is central in the 

decision-making process. They could be assisted or not by AI-based recommendation systems 

(e.g., power grid human operator, train dispatcher, staff supervisor in ATM). 

• Regulatory agents: Regulatory agents in critical infrastructures are organizations and agencies 

responsible for overseeing and ensuring the safety, security, reliability, and compliance of 

essential systems and services. These agents establish regulations, guidelines, and standards 

to protect these infrastructures from various risks, including cyber threats, physical attacks, 

and natural disasters. 

• Environment: It corresponds to the real-world environment in which the critical infrastructure 

operators are operating and should interact with other stakeholders or objects to perform 

their tasks (e.g., power grid, railway network, and airspace). 

• Simulator: It corresponds to digital environments, allowing simulation of real-world 

environments. It allows operators to simulate the real-world context as well as the operation's 

impact and, hence, to perform more meaningful and reliable actions. 

• Standards: European standardization organizations play a crucial role in system design by 

establishing guidelines, best practices, and standards that ensure interoperability, safety, 

security, quality, and efficiency. 
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• Secondary actors: Secondary actors as stakeholders in critical infrastructures are those who 

are not directly involved in the operations but still play significant roles in supporting, 

influencing, or being affected by these infrastructures. These stakeholders can include 

regulatory bodies, suppliers, customers, emergency services, and others. 

3.2.3.1.2 ENVIRONMENT DIAGRAM 

An environment diagram in system design is a visual representation that illustrates the external 

entities, interactions, and contexts in which a system operates. This diagram helps define the system's 

boundaries and understand how it interfaces with external elements such as users, other systems, 

hardware, and environmental factors. 

Figure 30 shows the interactions, with data flows, between the various stakeholders (human or 

systems) and the system as a black box. We can observe in this scheme that the environment provides 

the real-world context and data for the framework, which in turn are exploited by different 

stakeholders. As an example, the data profiles are used to train AI-based decision systems for human 

operators. Human operators and supervisors also interact with the environment and simulators. They 

try to analyze the impact of their actions on simulated environments before performing them in real-

world environments. Furthermore, the operators interact also directly with the framework for the 

whole decision-support process. They could request assistance from the trained AI-based 

recommendation systems in different operational contexts. To ensure the security and reliability of 

the assistance, the regulatory agents analyze the decisions made by the framework to verify 

conformity with guidelines and standards. 

 

FIGURE 30 – ENVIRONMENT DIAGRAM 

3.2.3.1.3 OPERATIONAL REQUIREMENTS 

Operational requirements in system design specify the conditions under which a system must operate 

and the performance criteria it must meet during its usage. These requirements are essential for 

ensuring the system functions effectively in its intended environment and meets the needs of its users. 
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Operational requirements cover various aspects such as functionality, performance, reliability, 

security, and user interactions. These requirements are carefully addressed for each UC of the project 

and their corresponding scenarios in UC descriptions. We assign these requirements to functional vs. 

non-functional requirements and to generic vs. specific requirements (see Annex 2 for more details 

about the functional and non-functional requirements). This will help to design the functional view of 

the framework. 

Based on the requirements described in the first part of this document, we assign Table 12, in front of 

each requirement, a pair of (F/N, G/S) will be used to designate functional (F) vs. non-functional (N) 

and generic (G) vs. specific (S) requirements. Generic requirements will be directly integrated into the 

functional analysis of the conceptual framework. In contrast, specific requirements (related to a 

specific use case) should be generalized to have a generic representation on the top of use cases. 

Category Power Grid Railway Air traffic 

Robustness 

• Keep electrical grid security (F, S) 

• AI informs the human operator 

about its confidence in the output 

recommendation (self-awareness) 

(F, G) 

• Fault tolerance (F, G) 

• Reproducibility and traceability of 

recommendations for post-

mortem analysis (F, G) 

• Adaptability to different 

operating conditions (F, G) 

• Do not increase cybersecurity risk 

(N, G) 

• Keep acceptable performance 

levels under natural or adversarial 

perturbations during operation 

(N, G) 

• Robustness to attacks targeting 

model space and reward function 

(N, G) 

• Detect changes in AI behaviour (F, 

G) 

• Adaptation to increased 

uncertainty (F, G) 

• Network change responsiveness 

(F, G) 

• Cognitive load and stress (N, G) 

• Reproducibility of 

recommendations for post-

mortem analysis (N, G) 

• Increase technical robustness to 

missing or erroneous input data 

(F, G)  

•  

• Reasonable 

recommendations in new 

situations (not seen during 

model training) (F, G) 

• Good performance in 

operating scenarios with 

high variability (N,G) 

• Retrospective quality 

control (N, G)     

• System resilience to 

unexpected events (N, G) 

• Cyber and data security 

(N, G) 

• System’s reliable 

operation and decisions 

(N, G)    

  

Efficiency 

• Computational efficiency (N, G) 

• Relevance of the 

recommendations (N, G) 

• Capacity to handle 

operating scenarios with 

high complexity (N, G) 

• Scalability (N, G) 

• Capability to optimize 

resources and operations 

(F, S) 

• Scalability (N, G) 
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Category Power Grid Railway Air traffic 

• Scalability (N, G) 

• Adequate training environment 

(N, G) 

  

• Generalization to different 

scenarios (F, G) 

Interpretability 

• Adaptability to different levels of 

interaction and human operator 

preferences (F, G) 

• Action rating (F, G) 

• Transparency during system 

training (F, G) 

• Capacity to explain 

recommendation(s) to the human 

operator (and other stakeholders) 

(F, G) 

• Adaptability to different levels of 

interaction and human operator 

preferences and experience (F, G) 

• Interpretability of 

suggestions (F, G) 

• Provide clear, 

understandable 

explanations for its 

decisions (F, G)   

• Usability of the system 

from the human and other 

stakeholders’ perspective 

(N, G)  

Non-

discrimination and 

fairness 

• Avoid creating or reinforcing 

unfair bias in the AI system (F, G) 

• Regular monitoring of fairness (F, 

S) 

  

• Distribution of Delays (N, G)  

Human Agency 

and Oversight 

• Additional training about AI for 

human operators (N, G) 

• Mitigate addictive behavior from 

humans (N, G) 

• Mitigate de-skilling in the human 

operators (N, G) 

  

Regulatory and 

legal 

• Compliance with existing 

operational policies (N, G) 

• European AI Act (F, G) 

• Transparency to humans in terms 

of interaction with an AI system 

(N, G) 

• Compliance with legal 

standards and regulations 

(N, G)   

• RUOM Favouritism (N, S)    

• Compliance with legal 

standards and regulations 

(N, G) 

Data governance 
• Processing of human operator 

data (N, G)   

Accountability 

• Allow audits for the AI 

recommendations and human 

operator actions (N, S) 

• Reporting of potential 

vulnerabilities, risks, or biases (F, 

G) 

  

Other  

• Maintainability (N, G)  

• Environmental 

Sustainability (N, G)   

• Maintainability (N, G) 

• Environmental 

Sustainability (N, G)   

TABLE 12 – CATEGORIES FOR THE THREE DOMAINS 

3.2.3.1.4 HUMAN-IN-THE-LOOP AND OVERSIGHT REQUIREMENTS 
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In addition to the operational requirements intrinsic to the domain presented earlier, we have 

identified an additional set of functional requirements to enable human-in-the-loop decision-making 

under risk and uncertainty. To follow, we list in Table 13 the identified requirements by presenting a 

short description and a categorization based on the part of the system and the actor that must adhere 

to these requirements. The identified actors can be divided into Operator, the human interacting with 

the system; Agent, the AI-powered side of the decision-making process; and environment, either the 

true one or the cloned copy accessed by the agent for forecasting and assessment. 

Requirements   

Categories ID 
Category name for 

requirements 
Category description Actor 

R-01 Alarm Triggering Human 
An operator can trigger the alarm to interrupt an 
execution and step into the decision-making. 

Operator 

R-02 Inspect Status 
An operator can inspect the system's undergoing situation 
to observe what has happened and what caused their 
intervention. 

Operator 

R-03 Provide Action 
An operator can take action if the suggestions given by the 
agent are not exhaustive. 

Operator 

R-04 Inspect Remedial Plan 
An operator can access and inspect a remedial plan 
proposed by the agent to see the sequence of actions 
autonomously scheduled by the agent. 

Operator 

R-05 Inspect Feedback 
An operator can analyze the feedback provided by the 
autonomous agent to decide whether a recommendation 
should be followed. 

Operator 

R-06 
Ask for Additional 
Recommendation 

An operator can ask the agent to provide additional 
suggestions in case none of the remedial plans satisfies 
their expectations. 

Operator 

R-07 Provide Constraint 

An operator can limit the freedom of an autonomous 
agent by providing temporary constraints to get remedial 
plans that respect the given indication. For example, in the 
power grid domain, an operator may force a certain 
substation to be switched. Consequently, the remedial 
plans provided by the AI must switch the given substation. 

Operator 

R-08 
Recommendation 
Selection 

An operator can decide to follow a remedial plan provided 
by the agent. 

Operator 

R-09 
Estimate Epistemic 
Uncertainty 

The agent can estimate the epistemic uncertainty of its 
decision model to establish its level of confidence within 
an observed state.  

Agent 

R-10 Alarm Triggering Agent 
The agent can raise an alarm to draw human attention. 
Consequently, the human operator will need to provide 
some input. 

Agent 

R-11 Simulate Remedial Plan 
An agent can interact with a copy of an environment to 
simulate a remedial plan and/or provide feedback. 

Agent 

R-12 Adapt Recommendation I 
The agent can adapt its recommendation based on 
constraints given by a human operator. 

Agent 

R-13 
Adapt Recommendation 
II 

The agent can adapt its recommendation based on the 
human mental status to prevent additional stress on the 
human operator. 

Agent 

R-14 Handle Operator Plans 
The agent can process a plan given by an operator to roll 
out an action or a sequence of actions and provide 
feedback. 

Agent 

R-15 Validate External Plans 
The agent can validate and simulate an external remedial 
plan provided by an operator 

Agent 
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Requirements   

Categories ID 
Category name for 

requirements 
Category description Actor 

R-16 
Provide 
Recommendation 

The agent can provide up to N multiple remedial plans. 
Each remedial plan consists of a sequence of actions to be 
taken to address a certain situation. 

Agent 

R-17 
Provide Visual Human 
Readable State 

An environment should provide a graphical depiction of 
the undergoing situation to allow human intervention. 

Environment 

R-18 Provide Text-based State 
An environment should provide additional context in a 
text-based manner to extend the graphical depiction and 
allow the human to take informed actions. 

Environment 

R-19 
Estimate Aleatoric 
Uncertainty 

An environment should support the estimation for 
aleatoric uncertainty derived by an external source, such 
as weather conditions. 

Environment 

R-20 Clone 

An environment should provide a method to clone and 
synch a simulated copy from the true environment 
instance. Cloning allows an AI agent to rollout actions from 
the current state and then provide feedback to an 
operator. 

Environment 

R-21 Action Conversion 
An environment should support the bi-directional 
conversion of actions. From human-readable action to 
agent action and vice-versa.  

 

R-22 Raise Alarm 
The system should have an alarm accessible by a different 
range of actors to enable a human to intervene. 

Environment 

R-23 
Communicate Alarm 
Context 

On the triggering, the system should provide extensive 
information about the causes that triggered the alarm 

Other 

R-24 Pause Interaction Loop 
The autonomous Agent-Environment interaction loop 
must allow for being interrupted and paused when 
additional external input is required. 

Other 

TABLE 13 – HUMAN-IN-THE-LOOP AND OVERSIGHT REQUIREMENTS 

Along with the UC-specific requirements, these requirements will contribute towards the design of the 

functional view of the framework by supporting the design of the human-AI interaction loop. 

3.2.3.1.5 OPERATIONAL USE CASES DIAGRAM 

This stage enables us to understand how the system will be used and interact with stakeholders and 

an operational UC diagram (see Figure 31 below) is used to highlight the added value of the system to 

be developed. 

We have identified eight operational UCs: From this system, an operator expects to receive contextual 

information (from his external environment and from the system being controlled), as well as a 

summary of current events. This information, which can be very numerous, needs to be sorted so that 

it can be communicated at the right time. The novice operator also expects to be assisted in his 

decision-making by considering both the external context (the environment and the system being 

piloted) and the internal context.  An expert operator can contribute to the assistant’s continuous 

learning (enriching its knowledge base). To distinguish the two cases, the operator can select their 

interaction mode, choosing between human in full control, co-learning or human as a supervisor with 

AI making automatic actions/decisions.  

Finally, the operator should be able to communicate with external stakeholders to send or receive 

complementary information. 
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FIGURE 31 – OPERATIONAL USE CASES DIAGRAM 

3.2.3.1.6 ABSTRACT BASE USER STORY 

The use cases describe the interactions between the user and the AI-based decision system (see Annex 

2 for detailed descriptions). Based on these descriptions and the general context of the UCs, we derived 

user stories during a cross-domain workshop which allowed us to identify commonalities between the 

use cases (see Annex 4). Further, this process enabled the distillation of an abstract base user story 

that can guide (together with the other parts of this framework) the development of the AI-decision 

system, especially concerning the human-machine interface, and enables to a certain degree the 

development of components and the design of interaction patterns applicable to all use cases across 

domains. The base story has three manifestations dependent on the time horizon: prepare for foreseen 

events (planning), prevent predicted events (near real-time), and correct events that happened (real-

time). 

All manifestations of the base story follow the same pattern: The story happens within a context, in 

which a trigger results in a series of three actions. First, a situation is observed (context), either through 

real-time monitoring (detecting differences between what is happening and what is planned), 

simulating what might happen (simulating potential futures), or by determining foreseen potential 

events. If a deviation is detected (real-time) or a potential deviation (planning and near real-time) is 

identified (trigger) by either the user or the AI system (depending on the UC), measures for the given 

situation are explored in all three manifestations. After exploring potential measures, either the 

human or AI system (depending on the interaction mode) is chosen to address the given situation. 

Finally, the story concludes with one of two actions that describe an intervention: either the chosen 

measure is implemented to correct the non-nominal state or to prevent a situation from happening, 
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or the measure is included in the operational plan in case the predicted or foreseen event will occur. 

Figure 32 depicts the abstract base user story for all three manifestations. 

 

FIGURE 32 – ABSTRACT BASE USER STORY 

3.2.3.2 FUNCTIONAL VIEW 

This subsection is dedicated to defining the functions of the system, as well as their hierarchical 

decomposition. At this stage of the project, we have identified eight main functions for the AI4REALNET 

conceptual framework. Each function is further refined into several sub-functions. We present these 

functions using the functional decomposition diagram (see Figure 33). Main functions are represented 

by blue boxes and sub-functions with white boxes.                                              

 

FIGURE 33 – FUNCTIONAL DECOMPOSITION 

Interact with the operator: This function oversees all exchanges with the operator. It is the main 

interface between the operator and other system functions. It acquires commands and requests from 

the operator and then communicates responses to his needs (help, recommendations, explanations, 

information display, etc.). The needs may or may not be expressed by the operator. Additionally, it 
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communicates the assistant's requests/needs to the operator (e.g., help the assistant, provide 

exogenous information to complete the assistant's vision) and then receives the operator's responses 

to these needs/requests. This function also ensures that the right information is displayed in the right 

format at the right time (Hypervision concept, see Section 3.2.2.3). 

Determine the context in real-time: This function oversees the collection and analysis of all data 

related to external (environment) or internal (controlled system) contexts. It is responsible for 

recognizing the operator's current actions, determining the external context (weather, for example), 

the internal context (the situation in which the operator finds themselves at a given time t, and the 

type and category of event they have to deal with at a given time t).  From these data, this function 

builds and saves the current context (over a given period of time). The assistant adapts to the context 

(external conditions, state of the controlled system, state of the operator, etc.). In this way, the output 

of this function is an important input for other functions, particularly the operator decision support 

function. 

Select the interaction mode between humans and AI: At the beginning of the mission, the operator 

should parameterize the system by choosing its preference concerning its interaction with the AI. 

Different interaction modes can be available: 

• AI-assistant to human (human in full control),  

• Joint human-AI decision making (human-AI co-learning),  

• Autonomous AI (human as a supervisor). 

A default mode can be chosen.  

Help the operator: This function is responsible for analyzing all operator events, commands, actions, 

etc., and providing the appropriate solutions/aids.  

Learn from the operator: This function is responsible for extracting unacquired knowledge from the 

system and adding it to the knowledge/inference base. This knowledge can be provided by an 

operator, at the assistant's request, or on the operator's own initiative. It can also be based on the 

system's observations of the operator's gestures, actions, or behavior in the face of an unknown 

situation. 

Anticipate events: This function is responsible for analyzing events received (situations, incidents, etc.) 

and analyzing historical and forecast data (weather, cultural events, etc.), then predicting future events 

and anticipating goals, actions to be taken, etc. It is also responsible for predicting the impact of current 

events; some failures or incidents can result in other incidents.   

Check compliance with regulations (Trustworthiness): This function is responsible for assuring that 

the AI is always respecting and is compliant with regulations. For this, it continuously evaluates the 

Robustness, for example, by providing the confidence level and evaluating generalization capabilities. 

Also, this function could assess the risk and monitor fairness.  

Check AI behavior: This function checks the AI behavior. This means that it continuously checks and 

calculates KPIs on AI outputs to be aware immediately of any change in AI behavior. The supervisor 

will be alerted if the AI malfunctions. 
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3.2.3.3 FUNCTIONAL INTERACTION DIAGRAM 

Based on the environment diagram and the functional decomposition, the flow of data (functional 

objects) between the various functions will be determined, starting with the highest-level function 

down to the elementary functions or functions that interact directly with the stakeholders and then 

progressively identifying the missing internal functions (see Figure 34). 

 

FIGURE 34 – FUNCTIONAL INTERACTION DIAGRAM 

In this diagram, we consider the main eight functionalities presented in the previous section. We also 

add the interaction with the environment (operator, simulator, supervisor/ regulatory agent).  

As can be seen in this diagram, the operator may interact directly with the platform to get some 

assistance, select the desired interaction mode (see the previous section for different modes), and 

finally, based on the selected interaction mode, give feedback concerning the provided 

recommendations which in turn will be stored as new knowledge. When assistance is possible through 

the platform and the selected mode of interaction, the recommendations are also verified to be 

compliant with regulations and reinforced with some KPIs on AI-based decisions. 

3.2.3.4 LOGICAL ARCHITECTURE 

The logical view in system engineering, also known as logical architecture, represents the abstract 

structure of a system. It focuses on the system’s functionality, decomposing it into logical components 

and their interactions without concern for the physical implementation. This view helps in 

understanding how the system meets its requirements and in identifying the relationships and 

dependencies among components. It is crucial to ensure that the system's design aligns with its 

intended purpose and facilitates communication among stakeholders by providing a clear, conceptual 

model of the system's functionality.  

3.2.3.4.1 PROCESS VIEW 

The generic process is presented as an overview of the high-level interaction between different sub-

systems which are decomposed to various functions. These functions were identified during the 

functional analysis. Within the conceptual framework and in the context of human-AI interaction, we 
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are interested in three different interaction levels: AI assistant to human (human in full control), joint 

human-AI decision-making (Human-AI co-learning), and autonomous AI (human as supervisor). In the 

following, we suggest three different logical views of the conceptual framework to represent the 

system components and interactions. 

Human in full control: In the context of human-AI interaction, “human in full control” refers to 

scenarios where humans retain ultimate authority over decisions and actions influenced or assisted by 

AI systems. This concept emphasizes that while AI can provide insights, recommendations, or even 

perform tasks, the final decision-making power rests with humans. Overall, maintaining human control 

in AI interactions ensures that technology serves to augment human capabilities while safeguarding 

against unintended consequences or misuse.  

The logical view corresponding to this mode of interaction is shown in the diagram of Figure 35. The 

environment in critical infrastructures is monitored in real-time using various sensors. It is represented 

in a specific context, which constitutes the observation space. We could define the decision boundary 

and characteristics (action space) based on the observed context. The digital environments provide us 

with a set of tools to simulate real scenarios, which in turn enables the assessment of the decision's 

impact before their application in a real-world context. When operating on the infrastructures, human 

operators should take some actions (decisions) to remedy the potential encountered problems. They 

could optionally take advantage of AI assistance to augment their capability at the decision-making 

step. The AI assistance is also accompanied with some explanations based on numerical indicators 

(decision support in the scheme) to guide human operators for selection of recommendations. Once a 

candidate's decision is made by the human operator, the regulatory agent can verify the 

trustworthiness of the decision through various KPIs.  

 

FIGURE 35 – LOGICAL ARCHITECTURE (HUMAN IN FULL CONTROL SCENARIO) 

Human-AI co-learning: Human-AI co-learning in the context of critical infrastructure involves a 

synergistic partnership where humans and AI systems continuously learn from each other to enhance 

the efficiency, reliability, and resilience of essential services. This collaboration is crucial for managing 
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infrastructure such as power grids, water supply systems, transportation networks, and cybersecurity 

frameworks. 

In this co-learning process (see  Figure 36), AI systems can analyze vast amounts of data in real-time, 

identify patterns, and predict potential issues before they occur. For example, in a power grid, AI can 

monitor the network and detect anomalies that might indicate a fault. Human operators, on the other 

hand, bring contextual understanding and decision-making capabilities that AI lacks. They can interpret 

AI-generated insights within the broader context of socio-economic and environmental factors, make 

nuanced decisions, and adapt strategies as needed. 

In co-learning, the human learning process is explicitly supported by AI to increase human decision-

making skills. The overarching goal is to continuously improve human mental models about the 

environment, the AI, the self, and the cooperation with other people. AI can support these learning 

processes in different ways (e.g., by checking human assumptions or by mirroring his/her decision-

making patterns). It is crucial that the collaboration between humans and AI is deliberately designed 

in such a way that it supports the human learning processes.  

Moreover, humans can provide feedback to AI systems, refining their algorithms and improving their 

accuracy over time. This feedback loop ensures that AI systems are not static but evolve based on real-

world experiences and expert knowledge. In critical infrastructure, this means that AI can help 

anticipate and mitigate risks more effectively, to improve human-AI joint decision-making.  

 

FIGURE 36 – LOGICAL ARCHITECTURE (HUMAN-AI CO-LEARNING SCENARIO) 

Human as supervisor: Autonomous AI systems with human supervision (see Figure 37) in the context 

of critical infrastructure, which refers to AI technologies that operate independently to manage and 

control essential networks like the power grid, railway, air traffic sectors, and information and 

communication networks. These AI systems use advanced algorithms and ML to monitor, analyze, and 

make decisions to optimize performance, detect anomalies, and respond to emergencies. 

However, given the high stakes and potential risks associated with critical infrastructure, human 

supervision remains crucial. This supervisory role involves overseeing the AI’s decisions, intervening in 
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complex or unforeseen situations, and ensuring that the AI operates within ethical and regulatory 

boundaries. Humans provide the necessary oversight to manage the AI’s limitations, address biases, 

and make judgment calls that require human intuition and experience. This is an extremely demanding 

task for humans and, therefore, requires appropriate automation transparency as well as targeted 

leverage points for interventions.  

In summary, while autonomous AI can significantly enhance the efficiency and reliability of critical 

infrastructure, the human supervisor ensures safety, accountability, and compliance, creating a 

balanced and effective system. 

 

FIGURE 37 – LOGICAL ARCHITECTURE (AUTONOMOUS AI SCENARIO) 

As we can see in these diagrams, the decision-making module is composed mainly of AI agent solutions 

and decision support. The human agent is considered as part of this module only in full-control and co-

learning mode. 

Difference between AI agent solutions and decision-support: The AI agent solutions integrate 

different AI models that generate recommendations. These generated recommendations are modeled 

according to each corresponding AI model and need supplementary processing to be displayed to 

humans in the interface. The decision support is responsible for processing the AI outcomes and 

generating human-friendly recommendations that the operator can understand. Also, the decision 

support can provide KPIs for each recommendation to help the operator compare and choose the more 

efficient recommendation.    

3.2.3.4.2 BUILDING BLOCK VIEW 

To strengthen the connections between the research questions in this project and increase the 

relevance of our findings for the development of integrated applications, we developed a high-level 

conceptual prototype: the AI4REALNET system. This prototype provides a practical framework to test 

and refine ideas, ensuring that the research outcomes are aligned with real-world needs. It will be 

refined throughout the project and can serve as early design requirements for future applications. 
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This system is described here via the building block view, which offers a hierarchical representation of 

the system from a technical perspective. Thereby, the system is decomposed into technical elements 

like modules, components, and frameworks, as well as the dependencies that collectively build the 

system. In addition, the building block view also shows interactions with users and neighboring 

systems. Figure 38 shows the scope, context, and high-level view of the AI4REALNET AI-based 

(conceptual) system, and the depicted blocks are described in the following. 

 

FIGURE 38 – HIERARCHICAL REPRESENTATION OF THE SYSTEMS’ BUILDING BLOCKS AND CONTEXT 

Scope and context 

The AI4REALNET system is the center piece of the building block view and includes the AI parts aiding 

operations, the interfaces for human interactions as well as functions to directly assess its performance 

and to learn from feedback. The context in which the system operates includes neighboring systems 

to provide real-time operational information (production information system) and to implement 

decisions taken within the system in live operations (production dispatching system). Further, users, 
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such as operators, supervisors, and regulatory agents, are also part of the context and interact with 

the system. 

Level 1 

The system is decomposed according to the nature of its function, e.g., functions that enable human-

machine interaction are grouped into the Human-Machine-Interaction module: 

Human-Machine-Interaction module 

Functions and sub-functions: interact with the operator (display notifications, display contextual 

information (by implementing Hypervision concepts, see section 3.2.2.3), dialogue with the operator, 

respond to operator requests), help the operator (assist the operator in the completion of operational 

tasks), select the interaction mode between humans and AI. 

This module should save capitalization data to a data store. 

Adaptation module 

Functions and sub-functions: determine the context in real time (recognize the situation, characterize 

the situation, update the context), interact with the operator (adapt the interaction level between 

humans and AI), learn from the operator (capitalize on human decisions, update AI models based on 

human feedback). 

Capitalization on a human decision allows the module to update its training based on a data store 

containing all decisions, actions, etc. 

Prediction module 

Functions and sub-functions: anticipate events (predict an event, evaluate the impact of an event, 

predict the consequences of events). 

This module should save capitalization data to a data store. The module gets the current state from 

the digital environment (which, in the production phase, could be the production information system). 

Recommendation module 

Functions and sub-functions: help the operator (make actions, explain recommendations to the 

operator). 

This module should save capitalization data to a data store (including KPIs). 

Execution module 

Functions and sub-functions: help the operator (realize operational actions for the operator). 

This module provides execution plans for implementation in the digital environment (which, in the 

production phase, could be the production dispatching system). 

Assessment module 

Functions and sub-functions: check compliance with regulations (evaluate robustness, assess risk, 

monitor fairness), check AI behavior. 

Level 2 
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At this early point, the structure of one module that plays an integral role in the early phase of the 

project is described in more detail. 

Prediction module 

The prediction module can be functionally decomposed into the evaluation sub-module, the simulation 

engine, the AI agent(s), and the AI4REALNET digital environment. The evaluation sub-module gets a 

state at a specified time t from the production information system and receives requests from the 

recommendation module. The evaluation sub-module is based on the current state of the digital 

environment (which, in the production phase, could be the production information system) and 

requests simulations from the simulation engine, which orchestrates the simulation run with the 

digital environment and the AI agents for specified states and scenarios given by the request. 

Eventually, the evaluation sub-module evaluates the simulation results to identify potential events, 

assess the impact of potential or occurred events, and identify potential consequences of an event and 

provides the outcomes together with other information like UQs and explanations to the 

recommendation module. 

The simulation engine should save capitalization data to a data store (including KPIs). 

3.3 EPISTEMOLOGICAL AND PHILOSOPHICAL FOUNDATIONS OF 

TRUSTWORTHY AI 

This subsection investigates the epistemological and normative foundations of the notion of TAI and 

analyses the different components of risk and their application to AI with a particular focus on safety-

critical systems. The goal is to lay the ground, from an epistemological and philosophical perspective, 

for a non-calculative approach to AI risk assessment. The starting point is the assessment list for TAI 

(ALTAI) elaborated by the high-level expert group appointed by the European Commission. The 

endpoint is a revised and improved ALTAI that focuses on key requirements for safety critical systems 

and takes into consideration, when needed, the three main components of risk (hazard, exposure, 

vulnerability). Overall, this part of the conceptual framework aims at devising a theoretical approach 

capable of dealing with risk and uncertainty that is difficult to quantify, suggesting that some problems 

must be addressed with methods that have a philosophical nature. 

3.3.1 THE EPISTEMOLOGICAL AND NORMATIVE GROUNDS OF THE NOTION OF 

TAI 

The notion of TAI has been playing an increasingly central role in discussions on the responsible and 

ethically acceptable development and deployment of AI systems. Most notably, it provides the 

conceptual, philosophical, and ethical grounds for the effort the European Union has been making to 

provide an ethics-based regulation for the design and deployment of AI systems. Given the centrality 

of this notion for AI4REALNET, the analysis of its epistemological and normative grounds is a priority 

and complements the approach developed in section 3.2.1.22.4. 

According to the Ethics Guidelines for Trustworthy AI of the European Commission, TAI has three 

components, which should be met throughout the system’s entire life cycle: (1) it should be lawful, 

complying with all applicable laws and regulations (2) it should be ethical, ensuring adherence to 
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ethical principles and values and (3) it should be robust, both from a technical and social perspective. 

Despite its growing importance, the notion of TAI is not immune to criticism. First of all, there is no 

agreement on the determinants of trustworthiness in AI, namely, on what makes an AI system 

trustworthy. Moreover, it is not clear that some features that are typically deemed necessary for TAI 

are actually feasible for all AI systems. A prominent case involves explainability, which is systematically 

taken to be a fundamental ingredient of TAI and yet is hardly achievable in many systems. 

Most importantly, however, there is an additional, foundational problem: from a conceptual point of 

view, it is unclear whether the very ascription of trustworthiness to AI systems could be a legitimate 

move (Nickel et al., 2010). Some authors have even argued that the “Trustworthy AI story is a 

marketing narrative invented by industry, a bedtime story for tomorrow’s customers. The underlying 

guiding idea of a “trustworthy AI” is, first and foremost, conceptual nonsense. […] the Trustworthy AI 

narrative is, in reality, about developing future markets and using ethics debates as elegant public 

decorations for a large-scale investment strategy” (Metzinger, 2019). 

Without getting into the details, the problem stems from the fact that standard accounts of trust and 

trustworthiness, which systematically take interpersonal trust and trustworthiness as models for these 

relations, typically assign a central role to the trustee’s interests, motivations, and moral obligations 

(Ryan, 2020). On these grounds, many voices called into question the ascription of trustworthiness to 

AI systems, which simply do not possess motivations and intentions and cannot adhere to moral 

obligations. Accordingly, the notion of TAI would be a categorical error, and its use would amount to 

some form of ethics-washing.  

Building upon an awareness of these potential criticalities, the AI4REALNET project’s deployment of 

the notion of TAI starts from the acknowledgment that talk of trustworthiness in application to AI 

systems offers significant advantages. Most notably, it allows us to capture with a single notion two 

crucial dimensions of responsibly developed AI systems, namely reliability – i.e., accuracy, and 

robustness – on the one hand, and ethical acceptability on the other. Among other things, this way of 

understanding trustworthiness in AI seems to ground the approach adopted in the European Ethics 

Guidelines for Trustworthy AI and the related ALTAI, that AI4REALNET takes as a starting point to 

identify the relevant risks involved in the use cases, develop specific requirements, and possibly 

provide tools for validating such requirements. In fact, among the requirements for TAI outlined in the 

guidelines, only the one of “technical robustness and safety” explicitly addresses aspects related to 

accuracy and robustness. The other requirements, instead, concern the ethical and societal impact of 

AI systems (accountability, human agency and oversight, privacy and data governance, transparency, 

societal and environmental well-being, diversity, non-discrimination, and fairness).  

Even if the notion of TAI can provide significant advantages in keeping technical and ethical aspects 

together, the conceptual tenability problem remains to be solved. On the one hand, as a matter of 

fact, the notion of TAI encompasses an ineliminable ethical dimension. On the other hand, this 

dimension cannot be the same as interpersonal trust and trustworthiness, for this would require 

problematic attributions of paradigmatic human features to AI systems (again, having motivations and 

responding to moral obligations) to AI systems.  
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The approach adopted in the context of AI4REALNET involves the rejection of a widespread – and yet 

seldomly justified – methodological assumption in the philosophical literature on TAI, namely, the 

notions of trust and trustworthiness in AI should be uncompromisingly modeled on their interpersonal 

counterparts (Petrolo, G., Chiffi, & Schiaffonati). On the contrary, following (Zanotti et al., 2023), room 

is left for a conceptual distinction between trust and trustworthiness in human-human (H-H) versus 

human-AI interactions (H-AI). 

As shown in Figure 39, a common conceptual core remains a distinctive feature of trustworthiness: 

just like in interpersonal relations, trust, and trustworthiness in human-AI interactions involve an 

aspect of reliability and encompass an ineliminable ethical component. The point is that when it comes 

to the way the ethical component is realized, H-H and H-AI trust differ. While trustworthy humans have 

the right interests, act upon goodwill, and adhere to moral obligations, TAI systems comply with 

specific ethical requirements. For instance, looking at AI4REALNET’s use cases, and in particular, at the 

systems involved in the use case Sim2Real, transfer AI-assistant from simulation to real-world 

operation, the design of the tool needs to be driven by the aim of avoiding human manipulation (e.g., 

misleading feedback, deliberately misusing the AI learning process).  

 

FIGURE 39 – H-H VERSUS H-AI TRUST 

As it is acknowledged that the ethical dimensions of trust and trustworthiness in H-H and H-AI 

interactions are different, the conceptual error risk is averted, and the notion of TAI can play a central 

role in shaping strategies for developing technically successful and ethically acceptable AI systems. 

3.3.2 AI-RELATED RISK AND UNCERTAINTY 

In addition to keeping together different crucial dimensions of AI systems’ design, deployment, and 

assessment, the notion of TAI has further merit. Traditionally, the concepts of trust and 

trustworthiness have been associated with situations of risk in which the trustor is vulnerable (Nickel 

& Vaesen, 2012) – e.g., there is the possibility that the trustee fails to perform the delegated task. As 

seen in sect. “Trustworthiness and ethical requirements”, the focus on risk is pivotal in the context of 

AI4REALNET as well.  

The notion of risk is a multifaceted one with no universally agreed-upon definition. On the one hand, 

non-technical understandings of risk coexist with technical ones. On the other hand, different 
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definitions of risk have been provided in the scientific literature. The one provided by the Royal Society 

in 1983, which is often referred to as the classic one, focuses on the probabilistic component of risk, 

which is characterized as “the probability that a particular adverse event occurs during a stated period 

of time or results from a particular challenge” (Royal Society, 1983).  

Nowadays, definitions of risk typically involve some kind of expectation and are usually spelled out in 

terms of expected utility. More precisely, risk is usually defined as the combination of the probability 

of an unwanted event and the magnitude of its consequences (Hansson, 2009). This understanding of 

risk is also at the basis of the risk-based approach adopted in the AI Act, which explicitly defines risk as 

“the combination of the probability of an occurrence of harm and the severity of that harm” (Art. 3, 

2). However, in the context of AI, and in particular in the AI Act, the notion of risk is not further 

articulated, and this also makes it difficult to evaluate how risk can be assessed and possibly mitigated. 

3.3.2.1 THE COMPONENTS OF RISK 

Providing this further articulation paves the way for the specification of the methodological bases of 

risk assessment. In the domain of disaster risk mitigation – in particular with reference to natural risk 

management – a multi-component approach is typically adopted, decomposing risks into their 

different components (UNISDR, 2015): 

• Hazard refers to the source of potential harm (e.g., a malfunction). Assessing hazard typically 

involves providing probabilistic estimates concerning the occurrence of the unwanted event 

as well as a specification of its magnitude. 

• Exposure refers to what could be harmed as a result of the occurrence of the unwanted event. 

Note that exposure can concern both people and material assets, such as buildings and 

infrastructures.  

• Vulnerability refers to those circumstances and features that make people and material assets 

more or less susceptible to the impacts of the hazard. 

Risk is given by the combination of these components, which need to be all present. For instance, risks 

characterized by relatively low levels of hazard should be regarded as significant if many people or 

material assets are exposed and/or highly vulnerable. Vice versa, high levels of hazard do not 

automatically translate into high risks, for the components of exposure and vulnerability might be 

marginal.  

While multi-component analyses of risk are typical in natural risk management, they can be fruitfully 

applied to the context of technological risk as well, specifically in the case of AI-related risk. It is 

sufficient to think about the different reasons why different AI systems might strike us as risky (Zanotti 

et al., 2024). Figure 40 depicts examples of the industrial domains we are considering in the 

AI4REALNET project. 
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FIGURE 40 – AI-RELATED RISK AND ITS COMPONENTS 

This way of understanding risk provides significant advantages. First of all, it allows us to better isolate 

and understand the different sources of risk for a certain system. As we have seen, a system with low 

hazard levels, for instance, might not intuitively strike us as significantly risky. However, it might 

nonetheless qualify as a high-risk one due to its high levels of exposure. In addition, a multi-component 

focus leads us to design targeted interventions and mitigation strategies to prevent and/or mitigate 

the risks involved in using the system. For instance, we might want to intervene on exposure, limiting 

access to a certain AI-based service, or we may decide to act to reduce users’ vulnerability. Importantly, 

this can be done on multiple fronts, simultaneously intervening in the hazard, the exposure, and the 

vulnerability. 

3.3.2.2 UNCERTAINTY 

Risk is often understood as being characterized by a distinctive probabilistic component: talk of risk 

typically implies that we can associate the potential outcomes, say, of the use of a certain technology 

with precise probabilities. However, this scenario is often unrealistic. It is, therefore, crucial to combine 

AI-related risk assessment with a rigorous analysis of the involved uncertainties (Nordstrom, 2022).  

It is often hard to provide point-like probabilistic estimates in real-world risk scenarios, and AI-related 

risk seems to make no exception. Still, in some cases, tools such as second-order probabilities and 

probabilistic intervals can be used to quantify the involved uncertainties.  

Things are more complicated in those contexts in which we lack solid grounds for assigning 

probabilities, even uncertain ones. This is especially true in the large-scale deployment of innovative 

technologies, for which probabilistic estimates can hardly be informed by historical data (Van de Poel, 

2016). In these situations, even if we might be able to anticipate the range of potential unwanted 

Hazard

It refers to the source of 

poten al harm (both natural and 
non natural hazards)

E amp es

 Malfunc on in a predic ve 
maintenance algorithm leading 
to failure in detec ng a 
transformer fault

 Error in rescheduling trains 

following a disrup on, leading to 
cascading delays across the 
network

 Misjudgment in  ight con ict 
detec on, causing delayed 
response to poten al mid air 
coll isions

Exposure

It refers to what could be armed, 

both in terms of l iving beings and 
material assets

E amp es

 Power supply to households, 
cri cal infrastructure like 
hospitals, and industrial plants 
relying on uninterrupted 
electricity

 Passengers, freight deliveries , 
and train operators across 
a ected routes

 Aircra , passengers, crew 
members, and airport 
infrastructure in densely 
tra cked airspace

Vulnerability

It refers to circumstances and 
measures making people or 
assets more or less prone to 

being damaged

E amp es

 Dependence on AI models 
without human oversight, 
outdated backup systems, and 
lack of redundant infrastructure

 Lack of fallback manual systems , 

dependence on real   me AI 
decision making in complex rail  
networks, and outdated sensor 
data feeding the AI model

 Limited human interven on due 
to over  reliance on AI systems, 
high tra c volume, and 
insu cient AI model training 
data for rare events
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outcomes resulting from the introduction of a certain technology, we should acknowledge that their 

probabilities are characterized by hardly quantifiable forms of uncertainty.  

Accordingly, the tool provided in the next pages is not meant to be employed solely during the design 

phase, for this would leave room for high degrees of uncertainty concerning the real-world use of the 

systems in question. Rather, it should constantly inform regular assessments of the systems in their 

final context of deployment. 

3.3.3 A NON-CALCULATIVE TOOL FOR RISK ASSESSMENT IN SAFETY-CRITICAL 

SYSTEMS 

Within AI4REALNET, the multi-component analysis of risk provides the conceptual and methodological 

grounds for applying the ALTAI to the specific context of the project. ALTAI is organized around the 7 

key requirements that are at the core of the TAI framework:  

1. Human Agency and Oversight; 

2. Technical Robustness and Safety; 

3. Privacy and Data Governance; 

4. Transparency; 

5. Diversity, Non-discrimination and Fairness; 

6. Societal and Environmental Well-being; 

7. Accountability.  

Within AI4REALNET and for the safety critical systems addressed in this context, four of these 

requirements are particularly relevant: Human Agency and Oversight; Technical Robustness and 

Safety; Societal and Environmental Well-being; Accountability. The ALTAI is a useful tool for self-

assessment and, despite its possible limitations, has the merit of providing a comprehensive view of 

the technical and ethical aspects contributing to trustworthiness. The choice of narrowing down the 

focus to the above-mentioned requirements is due to the fact that requirements 2, 6, and 7 seem 

particularly relevant in the context of safety-critical systems and can profitably be reconsidered under 

the lens of the multi-component analysis of risk. This analysis should also be considered when 

evaluating the requirement concerning Human Agency and Oversight, especially concerning the risk of 

overreliance on the system. This requirement is crucial for AI4REALNET due to the nature of the 

developed technologies, which support human decisions that should not be outsourced to the AI 

system. 

As an example, consider the following question from the ALTAI (Requirement #2, General Safety):  

Did you identify the possible threats to the AI system (design faults, technical faults, 

environmental threats) and the possible consequences? 

This question, which is indeed relevant for safety critical systems, shall be further specified, 

decomposed, and translated into the following sub-requirements: 

• Hazard: identify possible threats by considering both their probability of occurrence and their 

magnitude/impact on the system. 
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• Exposure: identify the systems’ levels of exposure to such threats, both in terms of quantity 

and duration. 

• Vulnerability: implement sufficient measures to make the system less vulnerable to such 

threats. 

Another example concerns the requirement of Societal and environmental well-being, and in particular 

the impact on work and skills. Even in this case, the de-skilling risk is addressed by distinguishing among 

(i) the affected skill and the severity of the de-skilling, (ii) the affected workforce, and (iii) the 

vulnerability of human operators with respect to de-skilling.  

Other sub-requirements, such as the AI system’s impact on democracy (“Did you take measures that 

ensure that the AI system does not negatively impact democracy?”), were not considered. While 

different AI applications could have significant repercussions on democracy, the systems deployed 

within the context of AI4REALNET do not seem to constitute a direct threat in this respect.  

Note that, in addition to the requirements directly stemming from the ALTAI’s questions, a 

requirement on risk acceptability has been added. Risk acceptability is a complex matter, and the 

factors making a given technological risk acceptable are highly dependent on the context and the 

available alternatives. It is, therefore, difficult to provide readily applicable and universally valid criteria 

for risk acceptability, which needs to be evaluated on a case-specific basis. As a general rule, however, 

it has been specified that evaluations should be made concerning the existence of alternative systems 

involving lower levels of risk in view of comparable positive outcomes. 

Finally, an important aspect of the proposed tool is that the ALTAI questions have been reconceived in 

the form of positive requirements to be employed already during the design phase. The ALTAI, as a 

matter of fact, is mostly meant to be the basis for ex-post self-assessment. The tool provided here, 

instead, should be proactively employed ex-ante, so as to encourage active responsibility. 

The key requirements, derived from the ALTAI framework and adapted for AI4REALNET’s safety-critical 

systems, are summarized in Table 14. 

Re evant ALTAI 
requirement 

Re evant ALTAI  sub-
requirement 

AI4REALNET requirements 

#1 Human agency and 
oversight 

Human agency and 
autonomy 

• Make sure that users are adequately informed about (i) the 
fact that they are interac ng with an AI system and (ii) the 
kind of inferen al mechanism behind the system’s output 

• Establish mechanisms for (i) preven ng over reliance on the 
system and (ii) monitoring the actual use of the system to 
constantly check for over reliance dynamics, especially in 
those scenarios for which we lack data 

• Assess the risks stemming from over reliance by considering 
these risks in terms of hazard (the poten al harming 
consequences of over reliance), exposure (people and assets 
exposed to such harm), and vulnerability 

• Make sure that humans maintain meaningful control over 
the system and that their autonomy is not limited by a loss of 
competence due to their regularly outsourcing  decisions – 
e.g., by blindly following recommenda ons – to the AI 
system (cf. (PRUNKL, 2022)) 
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Re evant ALTAI 
requirement 

Re evant ALTAI  sub-
requirement 

AI4REALNET requirements 

Human oversight 

• Besides giving human operators specific training on how to 
exercise oversight, make sure that they are provided 
informa on on the basic working principles of RL as well as 
on its risks 

#2 Technical robustness 
and safety 

Resilience to attacks 
and security  

• Assess the risks stemming from poten al hazards related to 
technical faults, outages, attacks, as well as inappropriate 
and malicious use 

• Iden fy the people and material assets exposed to the 
poten al harms resul ng from such hazards 

• Implement strategies to reduce the vulnerability to such 
hazards of (i) the system and (ii) the exposed people and 
assets   

• Plan regular monitoring to con nuously assess the involved 
risks and collect informa on on the system’s real world 
deployment  

General safety  

• Iden fy possible threats by considering both their probability 
of occurrence and their magnitude/impact on the system  

• Iden fy the system’s levels of exposure to such threats, both 
in terms of quan ty and dura on 

• Implement su cient measures to make the system less 
vulnerable to such threats 

Accuracy 

• Iden fy risks stemming from low levels of accuracy of the 
system by iden fying possible hazards, the related levels of 
exposure, and the vulnerability of exposed people and 
assets, as well as measures to reduce such vulnerability 

Reliability, fall back 
plans and 
reproducibility 

• Since the deployment of AI systems is o en characterized by 
elements of uncertainty, make sure that the introduc on of 
the system occurs in di erent steps, so that it is possible to 
evaluate risks in progressively broader controlled contexts 

#6 Societal and 
environmental well being 

Environmental well 
being  

• Iden fy the poten al environmental impact of the system by 
considering both the training and the deployment phases  

 

Impact on work and 
skills  

• Assess whether and how the systema c deployment of the 
system might cause human de skilling by iden fying (i) the 
a ected skills and the magnitude of the phenomenon, (ii) the 
a ected workforce, and (iii) the contexts and features that 
make humans more or less prone to de skilling, taking 
measures to mi gate de skilling risks and providing training 
and material to enable re  and up skilling 

#7 Accountability Risk management 

• Organize risk training to assure that all the three components 
of risk are considered 

• Put in place by design mechanism in case of applica ons that 
can adversely a ect individuals in terms not only of hazard 
but also exposure and vulnerability 

Addi onal requirements on risk acceptability:  
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Re evant ALTAI 
requirement 

Re evant ALTAI  sub-
requirement 

AI4REALNET requirements 

o Given a certain system and the involved risks, make sure that there are no alterna ve op ons (with or 
without the use of AI) reasonably involving lower levels of risk in view of comparable posi ve outcomes 

TABLE 14 – SUMMARY OF THE KEY REQUIREMENTS DERIVED FROM THE ALTAI FRAMEWORK AND ADAPTED 

FOR AI4REALNET’S SAFETY-CRITICAL SYSTEMS 
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4. CONCLUDING REMARKS 

This deliverable concludes the UCs and provides a conceptual framework description of the project. It 

describes six UCs across the energy and mobility domains, with high potential for human-AI teaming. 

From the UC description, it was possible to see that the AI-based systems in the project should be 

designed to raise alerts based on their confidence levels, ensuring timely human intervention while 

managing alert frequency to avoid operator cognitive overload. These systems allow for human 

override, as seen in UC1.Railway, where supervisors can take control and adjust settings based on AI 

confidence levels. This aligns well with the AI Act’s human oversight and intervention provisions. The 

co-learning process between humans and AI enables operators to request explanations and evidence, 

accept or reject advisories, and log interactions, allowing both the AI to learn from human preferences 

and the humans to improve their expertise continuously. This collaborative approach addresses 

potential biases and adapts to new contexts based on human feedback.  

The AI system supports real-time network operations by integrating information and forecasted 

conditions, enabling corrective and preventive actions at various automation levels. Manual actions 

are emphasized in the power grid domain, while higher automation levels are considered for railway 

and ATM domains. Each domain’s network structure helps inform solution strategies and constraints.   

For this work, two tools were used in capturing requirements: 

• The AI4REALNET project adapted the IEC 62559-2 standard, which defines the structure of a 

use case template, including lists for actors and requirements and their interrelations. This 

adaptation incorporated ISO/IEC TR 24030 elements to describe AI use cases, building on 

ISO/IEC 20547-2, IEC 62559, and IEEE P7003 standards. This approach enabled the 

identification of assumptions related to the business model of AI-based decision systems and 

their regulatory links, the description of business processes and activities, and a detailed 

outline of the functions supporting these processes and their associated information flows. 

• Instead of using the ALTAI assessment tool as an ex-post self-assessment of AI systems, it 

was employed for an ex-ante assessment of UC definitions. This proactive approach fostered 

discussions on potential risks and ethical issues specific to the considered UCs already in the 

early stage of a project.  

The AI4REALNET conceptual framework covers different layers, including decision process 

implementation and socio-technical system design, technical aspects of AI to meet requirements 

derived from the socio-technical level, and a transversal focus on trustworthiness from an ethical. and 

philosophical perspective. This framework benefits different end-users, such as AI developers, 

innovation managers, network operation managers, regulatory bodies, and standardization 

organizations, in several ways. 

First, it facilitates AI development for safety-critical infrastructures by emphasizing trustworthiness, 

ethics, and end-user trust through various human-AI interactions and human-centered AI approaches. 

Additionally, by addressing multiple UCs for the operation of critical infrastructures, the framework 

aims to engage the AI research community, offering a broader appeal than focusing on a single use 

case. It also standardizes the application of AI across different critical infrastructures, ensuring 

consistency, quality, and compatibility of AI solutions. 
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Furthermore, the framework acknowledges the unique challenges and requirements of operators of 

critical infrastructures, providing tailored strategies and solutions while fostering collaboration among 

these infrastructures. It ensures that AI applications adhere to existing regulations and ethical 

standards, including security and transparency, starting from the design and development phase. 

Designed to be as technology-neutral as possible, the framework can evolve with technological 

advancements and changing industry requirements while also allowing for the development of AI-

based systems. 
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ANNEX 1 – USE CASE TEMPLATE 

Disclaimer: This template is an adaption of the IEC 62559-2 standard that defines the structure of a use case 

template, template lists for actors and requirements, and their relation to each other. It was a standardized template 

for describing use cases defined for various purposes, such as use in standardization organizat ions for standards 

development or within development projects for system development. The AI4REALNET adaptation considers the 

version presented in ISO/IEC TR 24030 to describe AI use cases, which is also based on ISO/IEC 20547-2, IEC 

62559, and IEEE P7003. 

1 Description of the use case 

A Use Case captures a contract between system stakeholders about its behavior. It describes the  

system’s behavior under various conditions as it responds to a request from one of the stakeholders, 

called the primary actor. Moreover, it describes the functions of a system in a technology-neutral way. 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC.X 

Options: Energy (power 

network), mobility 

(railway network), 

mobility (air traffic 

management) 

 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 DD.MM.YYYY   

    

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope 
The scope defines the limits of the use case. Example: TSO operational planning 

Text 

Objective(s) 
The system's intention; what is to be accomplished; who/what would benefit.  

Text 

Deployment 

model 

Possible deployment models of AI considered in ISO/IEC TR 24030: cloud services, 

cyber-physical systems, embedded systems, hybrid, on-premise systems, social 

networks. 

Text 

1.4 Narrative of use case 

Narrative of Use Case 

Short description 

Short text intended to summarize the main idea for the reader searching for a use case or looking for 

an overview.150 words max 

Text 

Complete description 

Provides a complete narrative of the use case from a user’s point of view, describing what occurs when, 

why, with what expectation, and under what conditions. This narrative should be written in plain text so 
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non-domain experts can understand it, and can (should) have a step-by-step description. The complete 

description of the Use Case can range from a few sentences to a few pages. This section often helps 

the domain expert think through the function's user requirements before getting into the details required 

by the next sections of the Use Case. 

Text 

Stakeholders 

Stakeholders that can affect or be affected by the AI system in the scenario, e.g., organizations, 

customers, third parties, end-users, the community, the environment, negative influencers, bad actors, 

etc. 

Text 

Stakeholders’ assets, values  

Stakeholders’ assets and values that are at stake with potential risk of being compromised by the AI 

system deployment — e.g., competitiveness, reputation, trustworthiness, fair treatment, safety, privacy, 

stability, etc. 

Text 

System’s threats and vulnerabilities  

Threats and vulnerabilities can compromise the assets and values mentioned above – e.g., different 

sources of bias, incorrect AI system use, new security threats, challenges to accountability, new privacy 

threats (hidden patterns), etc. 

Text 

1.5 Key performance indicators (KPI) 

Descriptions of KPIs for evaluating the performance or usefulness of the AI system. Descriptions include the 

KPI’s name, description of the KPI, and reference to mentioned use case objectives. In AI4REALNET, we 

mention computing technical KPIs related to human and AI performance (e.g., accuracy, reward optimization, 

constraints satisfaction, computational time both at training and inference, attention budget). 

 

Name Description 
Reference to the mentioned use case 

objectives 

 The description specifies the KPI and may 

include specific targets about one of the 

objectives of the use case and the 

calculation of these targets. 

Text 

Here is the link to one of the objectives 

that are specified in the targets and the 

KPI. 

Text 

1.6 Features of use case 

Task(s) 

The main task of the use case. A pull-down list includes the following terms: recognition, 

natural language processing, knowledge processing and discovery, inference, planning, 

prediction, optimization, interactivity, recommendation and others.  

Text 

Method(s) 

AI method(s)/framework(s) used in development (it is optional in AI4REALNET since 

we may leave this open).  

Text 

Platform 
Indicate here the digital environment: Grid2Op, Flatland, BueSky. 

Text 

1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

Identify here relevant standards for the use case. A good source of information: 

https://www.iso.org/committee/6794475/x/catalogue/ 

https://www.etsi.org/committee/1640-sai 

https://www.iso.org/committee/6794475/x/catalogue/
https://www.etsi.org/committee/1640-sai


AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

142 

Text 

Standardization requirements 

Descriptions of standardization opportunities/requirements that are derived from the use case.  

Text 

1.8 Challenges and issues 

General Remarks 

Descriptions of challenges and issues of the use case. 

Text 

1.9 Societal concerns 

Societal concerns 

Description 

Description of societal concerns related to the use case 

Text 

Sustainable Development Goals (SGD) to be achieved 

The Sustainable Development Goals (SDGs), https://sdgs.un.org/goals, are a collection of 17 

global goals set by the United Nations General Assembly. SDGs are a universal call to action to 

end poverty, protect the planet and ensure that all people enjoy peace and prosperity. Indicate 

here the SGD that are within the scope of this use case. 

Text  

2 Environment characteristics 

Here the nomenclature from https://www.geeksforgeeks.org/types-of-environments-in-ai/ was used. The 

goal is to describe the real environment/problem (and not what currently exists in Grid2Op, Flatland or 

BlueSky). The information in the table below should be concise.  

 

Characteristics 

Observation 

space 

Fully observable or partially observable? Definition: “When an agent sensor is capable 

to sense or access the complete state of an agent at each point in time, it is said to be 

a fully observable environment else it is partially observable.”  

Discrete, continuous, or mixed? 

Data update rate, e.g., 15 min data update 

Size: small (< xx dimensions), medium (> xx & <xx dimensions), large (> xx 

dimensions)  

Text 

Action space 

Discrete or continuous or mixed actions? 

Size: small (< xx dimensions), medium (> xx & <xx dimensions), large (> xx 

dimensions)  

Time horizons, e.g., next hour, all hours of the next day 

Text 

Type of task 

Episodic or Sequential?  

Definition: “In an Episodic task environment, each of the agent’s actions is divided into 

atomic incidents or episodes. There is no dependency between current and previous 

incidents. In each incident, an agent receives input from the environment and then 

performs the corresponding action.” 

https://sdgs.un.org/goals
https://www.geeksforgeeks.org/types-of-environments-in-ai/
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Definition: “In a Sequential environment, the previous decisions can affect all future 

decisions. The agent's next action depends on what action he has taken previously 

and what action he is supposed to take in the future.” 

Text 

Sources of 

uncertainty 

Deterministic or stochastic? 

Identify sources of uncertainty, e.g., weather, unplanned outages due to assets aging  

Text 

Environment 

model 

availability 

Physical model/equations of the environment available? 

Text 

Human-AI 

interaction 

Full-human control (AI-assisted) or co-learning (between human and AI) or full AI-

based control (autonomous)? 

Text 

3 Technical details 

3.1 Actors 

The Actor is an entity that communicates and interacts. Actors can be humans, organizations, physical 

objects, software applications, systems or databases, environments (physical or digital)  

 

Actor Name 

 

Actor Description  

  

  

3.2 References of use case 

References (reports, mandates and regulatory constraints, papers, patents, press releases ) 

associated with the Use Case and that support interest from industry and/or regulatory bodies or provide 

additional information from past trials/ideas. Furthermore, identify any European legal issues that might 

affect the design and requirements of the function, including contracts, regulations, policies, financial 

considerations, engineering constraints, pollution constraints, and other env ironmental quality issues. 

 

References 

No. Type Reference Status Impact on use 

case 

Originator / 

organisation 

Link  

  report, 

mandates and 

regulatory 

constraints, 

paper, patent, 

press release 

Public / 

confidential 

Where does 

the 

document 

influence 

the use 

case? 

  

       

4 Step-by-step analysis of use case 

Template section 4 focuses on describing scenarios of the use case with a step-step analysis (sequence 

description). There should be a clear correlation between the narrative and these scenarios and 

steps. 

4.1 Overview of scenarios 

The table provides an overview of the different scenarios of the use case, like normal and alternative 

scenarios described in section 4.2 of the template. In general, the writer of the use case starts with the 
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normal sequence (success). If the precondition or post-condition does not provide the expected output 

(e.g., no success = failure), alternative scenarios must be defined.  

In section 4.2, we consider 4 main scenarios: training, evaluation, execution, and re -training. 

However, it is not mandatory to use all and additional scenarios can be added.  

 

Scenario conditions 

No. Scenario 

name 

Scenario description Triggering event Pre-condition Post-

condition 

   Event that triggers the 

scenario. It can be a 

real event (such as, “a 

fault occurs in the 

network”), or it is also 

possible to define 

scenarios that occur 

“periodically”. 

Describes the 

state of the 

system before 

the scenario 

starts.  

Describes 

the 

expected 

state of the 

system 

after the 

scenario is 

realized. 

1 Text Text Text Text Text 

      

 



 

 AI4REALNET has received funding from European Union’s Horizon Europe Research and Innovation 

programme under the Grant Agreement No 101119527. 

4.2 Steps of the operational scenario 1 

For this scenario, all the steps performed shall be described going from start to end using simple verbs 

like – get, put, cancel, subscribe, etc. Steps shall be numbered sequentially – 1, 2, 3, and so on. If 

needed, further steps can be added to the table (the number of steps is not limited).  

Scenario 

name 

Training… 

St

e

p 

N

o. 

Event Name of 

process/ 

activity 

Description of process/ 

activity 

Service 

Informa

tion 

produce

r (actor) 

Informa

tion 

receive

r 

(actor)  

Informati

on  

Requirement  

Exchang

ed (IDs) 

 Event 

that 

triggers 

the 

activity. 

Label 

for the 

step. 

Action 

verbs 

should 

be 

used 

when 

naming 

activity. 

EXAMP

LE: 

“Fault 

occurs 

in the 

grid”. 

This describes what 

action takes place in 

this step. The focus 

should be less on the 

algorithms of the 

applications, and more 

on the interactions and 

information flows 

between actors. 

Name 

of the 

actor 

that 

produc

es the 

inform

ation.  

Name 

of the 

actor 

that 

receiv

es the 

inform

ation. 

Use an 

ID 

referrin

g to the 

table in 

Section 

5. 

Several 

IDs can 

be 

listed, 

comma 

separat

ed. 

Use an ID 

referring to the 

table in Section 

6. 

Several IDs 

can be listed, 

comma 

separated. 

        

        

4.3 Steps of the operational scenario 2 

For this scenario, all the steps performed shall be described going from start to end using simple verbs 

like – get, put, cancel, subscribe, etc. Steps shall be numbered sequentially – 1, 2, 3, and so on. If 

needed, further steps can be added to the table (the number of steps is not limited).  

Scenario 

name 

Evaluation… 

St

e

p 

N

o. 

Event Name of 

process/ 

activity 

Description of process/ 

activity 

Service 

Informa

tion 

produce

r (actor) 

Informa

tion 

receive

r 

(actor)  

Informati

on  

Requirement  

Exchang

ed (IDs) 

 Event 

that 

triggers 

the 

activity. 

Label 

for the 

step. 

Action 

verbs 

should 

be 

used 

when 

naming 

activity. 

EXAMP

LE: 

“Fault 

occurs 

This describes what 

action takes place in 

this step. The focus 

should be less on the 

algorithms of the 

applications, and more 

on the interactions and 

information flows 

between actors. 

Name 

of the 

actor 

that 

produc

es the 

inform

ation.  

Name 

of the 

actor 

that 

receiv

es the 

inform

ation. 

Use an 

ID 

referrin

g to the 

table in 

Section 

5. 

Several 

IDs can 

be 

listed, 

comma 

separat

ed. 

Use an ID 

referring to the 

table in Section 

6. 

Several IDs 

can be listed, 

comma 

separated. 



 

146 

in the 

grid”. 
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5 Information exchanged 

These information objects correspond to the “Information Exchanged” column referenced in the scenario 

steps in Section 4 “Step by Step Analysis”.  

 

Information exchanged 

Information 

exchanged (ID)  

Name of information Description of information exchanged 

   

Refers to an 

identifier 

used in the 

field 

“Information 

Exchanged” 

of Section 4. 

It is a unique ID that identifies 

the selected information in the 

use case context. 

Brief description, in case a reference to 

existing data models/information classes 

should be added. Using existing canonical 

data models is recommended. 

Text Text Text 

6 Requirements 

This table summarizes the non-functional requirements of all steps in the Use Case and it is linked to 

template section 4 “Step by Step Analysis”. The ID for requirements (R -ID) is a unique ID. The following 

categories of non-functional requirements (inspired by Zhang, J. M., et al. (2020). Machine learning 

testing: Survey, landscapes and horizons. IEEE Trans. on Soft. Eng., 48(1), 1 -36.) should be considered 

(but it is possible to add more): 

• Robustness 

• Efficiency 

• Interpretability 

• Regulatory and legal 

 

Requirements  

Categories 

ID 

Category name for requirements Category description 

Unique 

identifier 

for the 

category.  

 

Name for the category of requirements. 

 

Description of the requirement category. 

Requirement 

R-ID 

 

Requirement name Requirement description 

Unique 

identifier 

which 

identifies 

the 

requirement 

within its 

category. 

A name of the requirement. Description of the requirement. 

   

7 Common Terms and Definitions 

Follow the AI terminology and taxonomy that is currently being harmonized between EU and U.S. 

https://digital-strategy.ec.europa.eu/en/library/eu-us-terminology-and-taxonomy-artificial-intelligence 

 

https://digital-strategy.ec.europa.eu/en/library/eu-us-terminology-and-taxonomy-artificial-intelligence
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Common Terms and Definitions  

Term Definition 
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ANNEX 2 – USE CASES DESCRIPTIONS 

UC1.POWER GRID: AI ASSISTANT SUPPORTING HUMAN OPERATORS’ 

DECISION-MAKING IN MANAGING POWER GRID CONGESTION 

1 Description of the use case 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC1.Power Grid Power grid 
AI assistant supporting human operators’ decision-making in 

managing power grid congestion 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 29.01.2024 Bruno Lemetayer 

(RTE) 

Initial document (copy from last version of 

short template document) 

0.2 01.03.2024 Bruno Lemetayer 

(RTE) 

Process of all workshop’s feedback 

0.3 05.04.2024 Bruno Lemetayer 

(RTE) 

Preparation of final version 

0.4 11.04.2024 Bruno Lemetayer 

(RTE) 

Finalization of the document 

0.5 20.04.2024 Ricardo Bessa 

(INESC TEC) 

Non-functional requirements from ALTAI 

0.6 24.04.2024 Cyrill Ziegler 

(FHNW) 

Insertion of Human Factors KPI’s 

1.0 06.07.2024 Ricardo Bessa 

(INESC TEC) 

Final version 

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope Power grid real-time operation and operational planning (hours-ahead) 

Objective(s) 

The goal of a Transmission System Operator (TSO), and thus human operators in 

the control room, is to control electricity transmission on the electrical infrastructure 

(transmission grid) while pursuing multiple objectives, firstly to keep the system 

state within acceptable limits and:  

• keeping people and grid components safe,  

• meeting the production/consumption balance and avoid blackouts,  

• minimizing operational costs (control actions, energy losses, etc.),  

• facilitate energy transition (e.g., integration of renewables) by copping with 

greater uncertainty in forecasts and greater complexity of events and 

context. 
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In this context, this use case describes an AI assistant that provides a human 

operator with recommendations for actions and/or strategies, considering the 

following objectives: 

Functional aspects 

1. Aimed at safely managing overloads on the electrical lines and, more 

specifically, remedial action recommendations 

2. Making the most of the renewable energies installed by limiting the 

emergency redispatching call to thermal power plants emitting greenhouse 

gases 

Behavioral and social aspects 

3. Easing the workload of the human operator needed to fulfill his/her 

missions, 

4. Integrate explainability, transparency, and trust considerations for the 

human operator. 

The AI assistant shall also act in a “bidirectional” manner, i.e. capitalize on the 

actions and the feedback from the operator with an “online” learning process running 

continuously. 

Deployment 

model 
Cloud services, on-premises systems. 

1.4 Narrative of use case 

Narrative of Use Case 

Short description 

The AI assistant oversees the transmission grid, using SCADA data and available EMS tools to 

identify issues and categorize them for human intervention. It monitors power flow, voltage, and 

balance, adhering to defined operational conditions. Anticipating problems, it sends binary alerts 

to the operator with confidence levels, avoiding excessive alerts to maintain operator focus (i.e., 

controls attention budget). Action recommendations include topological changes, storage 

adjustments, redispatching, and renewable energy curtailment. The human operator selects an 

action or seeks more information, exploring alternatives. After the operator's decision, the AI -

assistant provides feedback through load flow calculations, logging decisions for continuous 

learning and interaction improvement. 

This use case only addresses congestion issues, even if other types of issues can arise on 

the Transmission Grid and are handled by the operators (e.g.,  voltage). 

Note: Different modes of interaction are possible between AI assistant and human operator, 

ranging from “full human control” to “full AI control”. The selected mode depends on the industry 

domain and context. In this use case, an ex-ante choice is made to apply a hybrid interaction 

where the human operator gets the final word on AI assistant recommendations.  

Complete description 

1. The AI assistant monitors the situation of the transmission grid by using the available data 

from SCADA (Supervisory Control And Data Acquisition) and Energy Management System 

(EMS) tools and categorizes issues by distinguishing the ones needing intervention by the 

human operator. 

The situation of the transmission grid is monitored at the appropriate horizon (e.g., a few 

hours ahead to 30 minutes ahead) by using relevant forecasts (generation, consumption).  

Issues correspond to deviations from acceptable operation conditions of the electric 

system, mainly defined by: 

• Power flow on electric lines not exceeding thermal limits (considering, for instance, 

a tolerance for temporary overload). 

• Voltage maintained within a defined range. 

• Generation and load are always balanced (frequency is maintained around 50 Hz).  
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The AI assistant monitors these operating conditions and considers a predefined list of 

contingencies according to the operational policies of the TSO, which include:  

• The nominal grid, i.e., the “N” situation (in which all grid elements are available).  

• Cases in N situations where overload duration exceeds allowed thresholds: 

depending on TSO’s operational policies, it can be indeed allowed to let transit 

flows exceed a temporary threshold on a given line (e.g., flows can be higher than 

x A for 20 minutes, after which line will automatically trip). 

Note: such equipment is used on all lines of RTE’s grid  

• A list of possible “N-1” (electric system’s state after the loss of one grid element 

and possibly several grid elements depending on the TSO’s policy).  

 

2. When anticipating issues requiring intervention, the AI assistant raises alerts for decisions 

at the appropriate horizon (e.g., a few hours ahead down to 30 minutes ahead) to the 

human operator in time to carry out corresponding actions. These alerts are “binary” in 

the sense that either the AI assistant sends a persistent alert or not, and they are 

associated with a level of confidence, i.e., the level of certainty of the AI assistant that the 

electric system won’t remain within acceptable operation conditions if no action is 

performed. The level of confidence is based on the uncertainty in the forecasts.  

The AI assistant should not send too many alerts to keep the human operator concentrated 

on his or her tasks and thus ease his or her workload. 

 

3. For a given alert, the human operator receives action recommendations from the AI 

assistant, with information on the predicted effect and reasons for the decision. Possible 

actions are: 

• Topological action: topology can be changed by switching power lines on and off 

or reconfiguring the busbar connection within substations.  

• Redispatching action: change the flexibility’s (generator, load, battery, etc.) active 

setpoint value. Redispatching actions include therefore storage actions (e.g., 

define the setpoint for charging and discharging storage units such as batteries)  

• Renewable energy curtailment: limits the power output of a given generation unit 

to a threshold, defined, for example, as the ratio of maximal production Pmax (a 

value of 0.5 limits the production of this generator to 50% of its Pmax).  

 

4. The human operator chooses a proposed recommendation or requests new information or 

explanations, or looks for a different action guided by an exploration agent or via manual 

simulation using other specific tools (that aren’t part of the AI assistant).  

5. The human operator performs needed actions according to his/her decision. The AI 

assistant provides feedback to the human operators on the corresponding effects: this is 

performed afterward (1 hour or more after the facts) by running a load flow calculation. 

The decisions made are logged with their corresponding context to continuously learn from 

realized actions and improve the interactions between the human operator and the AI assistant 

(e.g., relevance of proposed recommendations for actions).  

Stakeholders 

TSO: The transmission system operator is in charge of maintaining and operating the electricity 

transmission grid, which is monitored by the human operator and the AI assistant.  

Note: This stakeholder includes all the people working for it. For example, the human operator in charge 

of the operation liaises with other colleagues working, e.g., in maintenance teams on the field.  

Other TSOs: Neighboring TSOs are connected to the TSO via its transmission grid.  

Regional Control centers: Control centers in charge of European operational services and TSO 

coordination for grid security analysis processes (e.g., TSCnet, Coreso).  

Human operator: A member of TSO’s team who monitors the grid and takes action.  
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Transmission grid users: Any party connected to the transmission grid in a contractual relationship 

with the TSO. This also includes Distribution System Operators (DSOs) and other critical infrastructures 

like railways, airports, and water treatment and distribution.  

Market participants: Any party involved in a market whose physical underlying is electricity delivered 

to or from the electricity transmission grid, such as (but not limited to) wholesale markets and balancing 

markets. 

Stakeholders’ assets, values  

TSO, Other TSOs, Regional Control Centers 

• Legal and regulatory framework of action (e.g. Energy law defining role and missions of the 

TSO, European network codes). 

• The AI system must enhance rather than hinder the TSO's operational competence. Risks 

involve misinterpretation of data, leading to incorrect decisions that impact the overall 

efficiency and reliability of the power transmission. 

• Use of an AI Assistant by human operators must not lead to a progressive deskilling of human 

operators, who could lose (or won't acquire in the case of junior operators) the knowledge 

needed to handle more complex situations where the AI assistant can’t provide any 

recommendation (i.e. ability to provide feedback to the AI) 

• Stakeholders (in particular grid users) must trust the AI system's capabilities. Any malfunction 

or lack of transparency in the AI decision-making process (e.g., excessive curtailment of a 

renewable energy producer) can erode trust in the TSO and its abili ty to manage the 

transmission grid effectively. 

It is, therefore, important to have a recurrent ex-post analysis process within TSOs to analyze 

the outputs of an AI system to improve confidence and also detect any bias or malfunctions.  

• If the AI system’s deployment is not communicated effectively or if there are public concerns 

regarding its use, the TSO's reputation may suffer, potentially affecting public and Energy 

Regulator support. 

The AI system should contribute to operational efficiency and cost-effectiveness. Moreover, 

the AI system's recommendations should align with sustainable energy goals.  

Human operator 

• Procedures and operation policies that define: 

o Critical boundaries, i.e., events that must be avoided (blackout or electrocution).  

o Conditions to be met by the actions (or applicable constraints/limitations), e.g., a 

given time must be respected between actions on a given line and changes in a 

generation are limited by ramp-up/down constraints. 

• The human operator’s decision-making authority is a significant asset. The AI system should 

complement human expertise. 

• The integration of AI may require additional training for human operators.  

• The AI system should aim to alleviate the human operator’s workload rather than exacerbate 

it. 

• The integration of AI can present opportunities for professional growth. 

Transmission Grid users 

• Depend on a reliable power supply, and the AI system must contribute to maintaining grid 

reliability. 

• Sensitive to energy costs, and the AI system's impact on grid operations should aim to optimize 

efficiency and minimize operational costs. 

• Expect transparency in grid operations. 

Market Participants 

The AI system's decisions should not favor specific producers unfairly, ensuring a level playing field in 

the energy market and promoting fair competition. 

System’s threats and vulnerabilities  

Planned and unexpected outage events: The planned maintenance of the power grid implies that 

some lines are switched off for some (fixed) duration to allow their maintenance in safe conditions. 

Even if these events are planned and thus known in advance, they a) degrade the transmission grid’s 
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security state and b) increase the probability of damage to the grid device (e.g., the circuit breaker 

used to switch back on the line). Planned events can also include regular maneuvers on grid devices 

to check their operating status. Grid operation can be affected by events related to equipment failures 

on the network (e.g., unplanned line tripping) due to aging or extreme weather events or by cyber -

attacks that can disconnect the grid’s equipment. Both events are external to the AI system and can 

increase the complexity of the solutions to solve the technical problems. The AI system will be more 

“exposed” to operating conditions, and the human operator will demand faster and more accurate 

recommendations.  

Dependency on external systems 

1) Forecasting system: The uncertainty of forecasts over a look-ahead horizon is intrinsically part of 

the base decision-making problem (or “MDP” for Markov Decision Process, which defines the 

environments with states and states transitions) and, therefore, part of this use case. There are several 

sources of uncertainty, such as weather forecast errors, interpolation errors for higher temporal 

resolution, or elasticity of demand to market prices. Thus, the AI-assist will make decisions under 

forecast uncertainty (i.e., forecast errors), which can impact its performance (e.g., generate false alerts) 

and require expensive corrective actions with forecast updates.   

2) SCADA measurements: Reliance on SCADA data quality and availability in terms of nodal injections 

and current grid topology, which introduces vulnerabilities if those sources are compromised or 

unavailable. 

Adversarial data attacks: Malicious actors might attempt to manipulate the AI system by introducing 

misleading data or injecting false information into the recommendation process, e.g., feeding deceptive 

information about the state of a particular grid node, causing it to recommend inefficient solutions or 

worsening congestion; or, injection of a sequence of false information to flood the human with requests 

during peak grid operation times. 

Trust from human operators: The operational performance of the AI assistant will not be close to 

100% of problems solved, which may hinder the confidence and trust of the human operator in the AI 

recommendations. This will introduce a negative cognitive bias in humans.  

Progressive deviation of environment behavior: Not only can the system conditions evolve 

(production type, consumption pattern, etc.), but also the operational rules, the human operators’ 

behavior, or other applicable regulations. This can progressively alter the efficiency of the AI assistant 

if it is not regularly “updated”. The issue can be exacerbated by the fact that such changes happen 

very incrementally in time. 

A mismatch between AI training and deployment: Related to UC2. Power Grid “Sim2Real, transfer 

from simulation to real-world”, where significant differences exist between the digital environment used 

to train the AI model and the real operating conditions. This could lead to low robustness and poor 

performance during execution, e.g., recommendations based on inaccurate assumptions about grid 

observability and controllable resources. 

1.5 Key performance indicators (KPI) 

Note: the table below is intended to give an exhaustive list of possible KPIs. This list will be narrowed 

down during the course of the project, and especially during WP4 for evaluation works.  
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Name Description 

Reference to 

the mentioned 

use case 

objectives 

Operation cost 

It is based on the cost of operations of a power grid that 

includes the cost of a blackout22, the cost of energy losses on 

the grid23, and the cost of remedial actions24.  

 

In order to simplify the computation and without hindering 

future improvements, it is proposed to define it as a vector 

whose dimensions represent different units, at least:  

• Number of real-time topological actions (switching 

actions, etc.) 

Only unitary actions at each timestep are considered, 

which means that a tuple action would be counted as two 

separate actions 

• Number of redispatching actions (including but not limited 

to storage) 

• Sum of redispatched energy volumes 

• Number curtailment action 

• Sum of curtailed energy volumes 

• Electricity losses 

 

Further details about cost calculation might be given during 

the course of the project (e.g., in WP4). 

This score could for example be completed with more financial aspects, 

such as immediate or long-term costs (e.g. indirect costs due to lifetime 

decay of circuit breakers).  

Note: The cost of AI system execution is not evaluated here. 

See requirement E-2. 

Objectives: 1 

Network 

utilization 

It is based on the relative line loads of the network, indicating 

to what extent the network and its components are utilized. 

 

This can be quantified by: 

• For each timestamp, the highest encountered N-1 line’s 

load N line’s load 

• The average of the maximum N-1 line’s load and N line’s 

load 

• For each timestamp, the number of lines where the N-1 

line’s load is greater than a given threshold (e.g., 1.0)  

• For each timestamp, the number of lines where the N 

line’s load is greater than a given threshold (e.g., 0.9)  

• For all timestamps, the energy of overloads, calculated 

as the power exceeding the line capacity, integrated over 

the concerned timestamps (in N and N-1 state) 

Objectives: 1 

 
22 calculated by multiplying the remaining electricity to be supplied by the market price of electricity. 

23 determined by multiplying the energy volume lost due to the Joule effect by the market price of electricity. 

24 the sum of expenses incurred by the actions using flexibilities (e.g. balancing products, curtailment or redispatching), based on the energy volume and 
underlying flexibility cost. 
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Name Description 

Reference to 

the mentioned 

use case 

objectives 

Topological 

action 

complexity 

It is used to give insights into how many topological actions 

are utilized: performing too complex or too many topology 

actions can indeed navigate the grid into topologies that are 

either unknown or hard to recover from for operators. 

 

Metrics for quantifying the topological utilization of the grid:  

• The average number of split substations (gives an 

indication of the distance to the reference topology) 

• The average number of substations modified in one 

timestamp (gives an indication of the complexity of the 

topological actions) 

• Number of unique split substations  

Objective: 1 

Assistant alert 

accuracy 

It is based on the number of times the AI assistant agent is 

right about forecasted issues (e.g., overloads) ahead of 

time. Moreover, a confusion matrix can be calculated to 

show: 

• True positive cases: forecast alerts were raised by the 

AI assistant, and the problem did occur on the 

transmission grid, 

• False positive cases: forecast alerts were raised by the 

AI assistant, but no problem occurred on the 

transmission grid, 

• False negative cases: no forecast alert was raised by 

the AI assistant, but problems occurred on the 

transmission grid. 

Objectives: 3, 

4  

Assistant 

relevance 

It is based on an evaluation by the human operator of the 

relevance of action recommendations provided by the AI 

assistant and measured by the number of recommendations 

from the AI assistant effectively used by the human 

operator. It ranges in [0, 100] with: 

• 0 meaning that no action recommendation from the AI 

assistant was considered useful by the human operator,  

• 100 that all action recommendations from the AI 

assistant were considered useful by the human 

operator.  

The KPI can have values different from 0 and 100 if only a 

part of the action recommendations from the AI assistant 

were used by the human operator. 

The KPI shall distinguish between the “best decision given 

the information available at the time” and the “best decision 

in hindsight.” The evaluation shall focus on the first case, i.e., 

it shall not be done after the facts with full knowledge of the 

human operator, which was not available at the time. 

Objectives: 4 
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Name Description 

Reference to 

the mentioned 

use case 

objectives 

Action 

recommendation 

selectivity 

This KPI measures how recommended actions from AI 

assistants contrast among KPIs used for human decisions: 

this allows us to put recommended actions in perspective 

with trade-offs used in human decisions. 

For each recommended action from the AI assistant, this 

KPIs consists of calculating the increase of each of the 

following KPIs (see above) due to action implementation:  

• Network utilization 

• Topological action complexity 

• Operation score 

Objectives: 3, 

4 

Assistant 

disturbance 

It aims to measure if the notifications raised by the AI 

assistant are disturbing the activity of the human operator. 

For each notification, the score ranges in [0, 5] with:  

• 0 meaning that the notification was not considered 

disturbing at all by the human operator,  

• 5 meaning that the notification was considered as fully 

disturbing by the human operator. 

Objectives: 3 

Workload 

It is based on a workload assessment of the AI assistant by 

the human operators. It shall be determined according to the 

NASA-TLX25 methodology or similar26. 

Objectives: 3 

Total decision 

time 

It is based on the time needed to decide overall, thus 

including the respective time taken by the AI assistant and 

human operator. This KPI can be detailed in a way that 

allows distinguishing specifically the time needed by the AI 

assistant to provide a recommendation. 

Objectives: 3, 

4 

Carbon intensity 

It is based on the overall carbon intensity of the action 

recommendation, calculated as follows: 

• The amount of energy curtailed (or decreased following 

redispatching action) is split according to generation 

type with a negative sign 

• The amount of additional energy yielded by 

redispatching action is split according to generation type 

with a positive sign 

• The netted amount of energy E i (MWh) is calculated per 

generation type i 

• Each amount E i is multiplied by the corresponding 

emission factor (kgCO2/MWh) Fi 

• The score is then calculated as: 

∑ 𝐸𝑖 × 𝐹𝑖𝑖

∑ 𝐸𝑖𝑖
 

Objectives: 2 

 
25 https://humansystems.arc.nasa.gov/groups/tlx/index.php 

26 See more recent works about design recommendations to create algorithms with a positive human-agent interaction and foster a pleasant user-experience: 
http://hdl.handle.net/1853/61232  

https://humansystems.arc.nasa.gov/groups/tlx/index.php
http://hdl.handle.net/1853/61232
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Name Description 

Reference to 

the mentioned 

use case 

objectives 

Trust towards 

the AI Tool 

“(Dis)trust is defined here as a sentiment resulting from 

knowledge, beliefs, emotions, and other elements derived 

from lived or transmitted experience, which generates 

positive or negative expectations concerning the reactions 

of a system and the interaction with it (whether it is a 

question of another human being, an organization or a 

technology)” (Cahour & Forzy, 2009, p. 1261).  

The human operators' trust towards the AI tool can be 

measured using the Scale for XAI (Hoffman et al., 2018) or 

similar.  

Objectives: 3, 

4 

Human 

motivation 

“Intrinsic motivation is defined as the doing of an activity for 

its inherent satisfaction rather than for some separable 

consequence. When intrinsically motivated, a person is 

moved to act for the fun or challenge entailed rather than 

because of external products, pressures, or rewards” (Ryan 

& Deci, 2000, p. 54). 

The human operators perceived internal work motivation can 

be measured by using the Job Diagnostic Survey (Hackman 

& Oldham, 1974) or similar. The questionnaire needs to be 

adapted to the AI context (e.g., problem detection with AI 

assistant). 

Objectives: 3, 

4 

Human control / 

autonomy over 

the process 

“Autonomy is the degree to which the job provides 

substantial freedom, independence, and discretion to the 

employee in scheduling the work and in determining the 

procedures to be used in carrying it out” (Hackman & 

Oldham, 1975, p. 162). It consists of three interrelated 

aspects centered on freedom in decision-making, 

work methods and work scheduling (Morgeson & Humphrey, 

2006). Parker and Grote (2022) view job autonomy 

interchangeably with job control. 

The human operator's perceived autonomy over the process 

can be measured by using the Work Design Questionnaire 

(Morgeson & Humphrey, 2006) or similar. The questionnaire 

needs to be adapted to the AI context (e.g. problem 

detection with AI assistance). 

Objectives: 3, 

4 

Human learning 

Human learning is a complex process that leads to lasting 

changes in humans, influencing their perceptions of the 

world and their interactions with it across physical, 

psychological, and social dimensions. It is fundamentally 

shaped by the ongoing, interactive relationship between the 

learner's characteristics and the learning content, all 

situated within the specific environmental context of 

time and place, as well as the continuity over time 

(Alexander et al., 2009). 

The human operators perceived learning opportunities 

working with the AI-based system can be measured by using 

the task based workplace learning scale (Nikolova et al., 

2014) or similar. The questionnaire needs to be adapted to 

the AI context. 

Objectives: 3, 

4 
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Name Description 

Reference to 

the mentioned 

use case 

objectives 

Decision support 

for the human 

operator 

Decision support tools should be aligned with the cognitive 

the decision-making process that people use when making 

judgments and decisions in the real world and ensure that 

the human operator retains agency (Miller, 2023). AI 

decision support tools should, therefore, help people to 

remain actively involved in the decision-making process 

(e.g., by helping them critique their own ideas) (Miller, 

2023). 

The decision support for the human operator can be 

measured based on the criteria for good decision support 

(Miller, 2023) or similar. The instrument needs to be further 

developed. 

Objectives: 3, 

4 

Ability to 

anticipate 

“The ability to anticipate. Knowing what to expect, or being 

able to anticipate developments further into the future, such 

as potential disruptions, novel demands or constraints, new 

opportunities, or changing operating conditions” (Hollnagel, 

2015, p. 4). 

The human operator’s ability to anticipate further into the 

future can be measured by calculating the ratio of 

(proactively) prevented deviations to actual deviations. In 

addition, the extent to which the anticipatory sensemaking 

process of the human operator is supported by AI-based 

assistant can be measured by using the Rigor-Metric for 

Sensemaking (Zelik et al., 2010) or similar. The instrument 

needs to be further developed and adapted to the AI 

context. 

Objectives: 3, 

4 

Situation 

awareness 

“Situation Awareness is the perception of the elements in 

the environment within a volume of time and space, the 

comprehension of their meaning and the projection of their 

status in the near future” (Endsley, 1988, p. 12).  

The human operator’s situation awareness can be measured 

by using the Situation Awareness Global Assessment 

Technique (SAGAT) (Endsley, 1988) or similar. 

Objectives: 3, 

4 

1.6 Features of use case 

Task(s) Planning, prediction, interactivity, and recommendation.  

Method(s) 
Reinforcement learning has been applied to this use case, but other AI approaches 

are possible.  

Platform 
Grid2Op digital environment, completed by an interactive tool allowing human 

operators to interact with the environment and the AI assistant  

1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

https://github.com/rte-france/Grid2Op
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ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. Operating the power grid is a high-stakes task, and therefore, risk management 

specifically related to AI is fundamental. This standard describes the principles applied to AI, risk 

management framework, and processes. It is intended to be used in connect ion (i.e., provides 

additional guidance for AI) with ISO 31000:2018, Risk management – Guidelines. 

ISO/IEC 38507:2022, Information technology — Governance of IT — Governance implications of 

the use of artificial intelligence by organizations . This use case aims to augment the human 

operator (not only skills and knowledge but also its role), not replace him, by recognizing the 

complementary differences between humans and AI and leveraging them for humans. This will 

require an analysis of governance implications on the use of AI, namely data-driven problem-

solving and adaptive AI systems (i.e., retraining during the operational phase) to new operating 

conditions and/or human feedback, culture, and values with respect to stakeholders, markets, and 

regulation. 

ISO/IEC 42001:2023, Information technology – Artificial intelligence – Management system. This 

standard is the world’s first AI management system standard, providing valuable guidance for this 

rapidly changing field of technology. It addresses the unique challenges AI poses, such as ethical 

considerations, transparency, and continuous learning. For organizations, it sets out a structured 

way to manage risks and opportunities associated with AI, balancing innovation with governance.  

IEEE 7000-2021, IEEE Standard Model Process for Addressing Ethical Concerns during System 

Design. This standard defines a framework for organizations to embed ethical considerations in 

concept exploration and development. It promotes collaboration between key stakeholders and 

ensures ethical values are traceable throughout the design process, impacting the operational 

concept, value propositions, and risk management. It is applicable to all organizations, regardless 

of size or life cycle model. 

Standardization requirements 

Application ontology that leverages agent-oriented AI recommendations to aid power grid 

operators in solving future problems based on past observations stored in a knowledge database. 

The first work in this direction was initiated in the French project CAB (Cockpit and Bidirectional 

Assistant), reference: Amdouni, E., Khouadjia, M., Meddeb, M., Marot, A., Crochepierre, L., 

Achour, W. (2023, April). Grid2Onto: An application ontology for knowledge capitalization to assist 

power grid operators. In International Conference On Formal Ontology in Information Systems-

Ontology showcases and Demos.  

In other domains of the energy sector, a good example of the use of ontologies is the Smart 

Applications REFerence (SAREF) ontology, a family of standards that enables interoperability 

between solutions from different providers and among various activity sectors on the Internet of 

Things and therefore contributes to the development of the global digital market.  

1.8 Societal concerns 
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Societal concerns 

Description 

Integration of renewable energy sources (RES): Enable higher integration levels of RES and 

decarbonization of the economy while maintaining (or improving) the reliability and resilience of 

the electric power system.  

Resilience to extreme (natural or man-made) events: Climate change is increasing the fragility 

of the power grid, as well as impacting the power produced by RES. Also, the digitalization of 

energy systems brings additional cybersecurity concerns to TSOs. These extreme events and 

cyber threats have not traditionally been considered in reliability standards, which typically 

consider reasonably probable events and neglect very improbable situations. Presently, power 

systems might not be sufficiently resilient to high-impact-low-probability events, which are 

becoming more probable. 

Degree of system autonomy: The power grid is a critical infrastructure impacting the economy, 

the safety of other infrastructures, and the comfort of humans. Therefore, the type of action space 

is relevant, particularly if AI is providing recommendations or direct action in the envi ronment. 

Furthermore, the human operator’s sole ability to operate the grid and associated knowledge shall 

not be hampered by the AI assistant and should, on the contrary, improve thanks to interaction 

with the AI assistant: deskilling must be avoided.  

Supervision: External supervision and regulator conformity assessment are present.   

Explainability and transparency: the human operator shall be able to understand the ground 

basis of action recommendations provided by the AI assistant. 

Sustainable Development Goals (SGD) to be achieved 

SGD7. Affordable and clean energy / SGD13. Climate action 

2 Environment characteristics 

Characteristics 

Observation 

space 

Partially observable.  

Mixed: discrete (e.g., for switching device states) and continuous (e.g., for transit 

flows) 

Data update rate: real-time (modeled with a 5 min resolution in Grid2Op digital 

environment) 

Size: very large (a network with around 100 nodes has more than 4,000 

dimensions. For instance, RTE’s grid is composed of more than 25,000 nodes and 

10,000 lines.)  

Action space 

Mixed actions (discrete and continuous). 

Size: large (for a network with around 100 nodes, it has > 65,000 different discrete 

actions & > 200 continuous actions. For instance, RTE’s grid is composed of more 

than 25,000 nodes and 10,000 lines.)  

All scenarios happen in an intraday time horizon, meaning not more than a 24-

hour forecast period. 

Type of task 

Human operators and AI assistants act in a sequential  environment: the previous 

decisions can affect all future decisions. The next action of these agents depends 

on what action they have taken previously and what action they are supposed to 

take in the future. For example, a choice of short-term remedial action can make a 

planned future action unavailable. 

 

Sources of 

uncertainty 
Stochastic (load and renewable energy forecasts, unplanned outages). 

Environment 

model 

availability 

Yes (physical laws of electricity). 
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Human-AI 

interaction 

Full-human control (AI-assisted) for all scenarios. Co-learning (between humans and 

AI) is specific to scenario 3. 
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3 Technical details 

3.1 Actors 

Actor Name Actor Description  

AI assistant 

AI agents provide assistance to human operators. It takes information from 

the environment to search for recommendations and aid the human 

operator. In the training phase, it can act on the environment to evaluate its 

recommendations. In the evaluation/testing phase, the actions on the 

environment should be performed by the human operator only.  

Human operator 
A member of TSO’s team is in charge of monitoring the grid and taking action 

on the environment (see “stakeholders” paragraph). 

Environment 

The human operator will interact with the Digital Environment and the AI 

assistant through an interface. It can be a digital environment, which is a digital 

model of the transmission grid, which includes unplanned events that are 

modeled as events appearing in predefined moments (defined directly in time 

series). In a real-world implementation, it is the physical environment. 

 

3.2 References of use case 

References 

No. Type Reference Status Impact on use 

case 

Originator / 

organisation 

Link  

1 Research 

paper 

“Towards an AI 

Assistant for Power 

Grid Operators” 

DOI: 

10.3233/FAIA220191 

Public Framework 

and principles 

for designing 

an AI 

assistant with 

bidirectional 

interactions 

for control 

room 

operators 

Antoine 

Marot, 

Alexandre 

Rozier, 

Matthieu 

Dussartre, 

Laure 

Crochepierre, 

Benjamin 

Donnot 

In book: 

HHAI2022: 

Augmenting 

Human 

Intellect27 

 

2 AI 

competition 

Paris Region AI 

Challenge for Energy 

Transition, Low-

carbon Grid 

Operations, April 2023  

Public The track 

“Assistant” 

has inspired 

the use case 

Paris Region, 

RTE 

Paris 

Region28 

 

 
27 https://www.researchgate.net/publication/363763107_Towards_an_AI_Assistant_for_Power_Grid_Operators  

28 https://www.iledefrance.fr/toutes-les-actualites/entreprises-et-chercheurs-participez-au-challenge-ia-pour-la-transition-energetique  

https://www.researchgate.net/publication/363763107_Towards_an_AI_Assistant_for_Power_Grid_Operators
https://www.iledefrance.fr/toutes-les-actualites/entreprises-et-chercheurs-participez-au-challenge-ia-pour-la-transition-energetique
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4 Step-by-step analysis of use case 

4.1 Overview of scenarios 

Notes regarding scenario and environment data: 

• It is specific to scenario #1 and scenario #2. 

• Scenario #3 uses scenario 1 data. 

 

Note regarding requirements: The column “requirement” for the scenarios’ steps has been left empty for the moment. That colum n will get more relevant in later 

stages of implementation/integration when moving for a field demonstration or to demonstrate a technology with higher maturity. 

 

Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

1 

Preventive action to 

grant N or N-1 

situation security in 

case of unplanned 

outage 

The AI assistant raises 

warnings in anticipation of the 

human operator and provides 

associated action 

recommendations.  

The AI assistant considers the 

operational context, which 

includes planned maintenance 

operations on the grid, and 

provides action to ensure grid 

security if needed. 

 

Note: a sub-scenario could 

address the case where the AI 

assistant can’t provide any 

relevant preventive action and 

make this clear to the human 

operator, see UC2.Sim2Real. 

There is a chance that the 

system security is not ensured 

at the forecasted horizon in an 

N or N-1 situation (for a 

specific case that could arise) 

if no action is performed. 

Thus, the AI assistant 

proposes actions to the 

operator. 

The AI assistant 

continuously checks that 

the transmission grid 

security is ensured at the 

appropriate horizons (e.g., 

from a few hours ahead 

down to 30 minutes ahead) 

when considering a list of 

contingencies defined in the 

operational policies of the 

TSO.  

The transmission grid state 

(and corresponding security 

assessment) is forecasted. 

The Grid system is in a 

normal situation; there is no 

contingency (unexpected 

event on the grid), and N/N-

1 situations are secured. 

The human operator 

chooses one of the 

recommendations provided 

by the AI assistant. 

The transmission grid goes 

into the state as predicted 

by the AI assistant, which 

informs the human 

operator about the 

transmission grid state 

following the action 

performed. 
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Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

2 

AI assistant learns 

from human 

operator 

The AI assistant updates its list 

of recommendations with 

actions that were performed by 

the human operator. 

Decisions of human operators 

are used to improve the 

learning of AI assistants in 

new contexts. 

 

The AI assistant is acting on 

new episodes that were not 

seen during training 

All new episodes are rerun 

with an AI assistant trained 

on these new episodes. 

The result is compared 

with AI assistants not 

trained in these new 

episodes. 

3 

(Nice to have 

scenario) 

 

Human operator 

learns from AI 

assistant 

The AI assistant provides 

feedback to the human 

operators on his/her actions. 

The AI assistant provides 

feedback on actions 

performed by the human 

operator with KPIs comparing 

the initially recommended 

action and the action chosen 

by the operator. 

Run scenario 1 from the 

use case Power Grid 

Assistant  

The human operator wants 

to replay the scenario to 

get detailed feedback. 

The AI assistant provides 

feedback to the human 

operator on his/her 

actions. 

 

4.2 Steps of scenario 1 

Note: For each step, an example of operational business context is given; this will be further detailed during the definition of scenario data. Here, the scenario 

starts when handling a planned maintenance operation on the grid at the beginning of an operator’s shift.  
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

Requirement 

1 Start The human operator 

prepares his/her 

shift 

Example of context: 

At 08:00 AM, the previous operator ended 

his/her shift. 

The planned outage on line L0 beginning at 

09.00 AM requires 2 actions: 

• P1: Change topology in an adjacent 

substation 

• P2: Coordinate and validate a transit 

limitation with a DSO 

(empty) (empty) (empty) (empty) 

2 Overload 

forecasted 

The AI assistant 

raises an alert 

Example of context: 

At 08:10, the AI assistant raises an alert for a 

potential overload that could occur starting at 

10:00 AM on line L1 (after the N-1 situation): 

with the current hypothesis and forecasts, the 

load flow performed on the 10:00 AM situation 

would result in an overload.  

This overload, if confirmed, needs remedial 

action (else operational limits would be 

violated) 

 

Note: The time horizon of the scenario might 

need to be adjusted depending on Digital 

Environment’s possibilities. 

AI assistant Human 

operator 

AIAL (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

Requirement 

3 Action 

recommendations 

The human operator 

processes the 

recommendations 

Example of context: 

The AI assistant proposes different possible 

remedial actions: 

• A.R1: load transfer from DSO (time limit 

08:15 AM) 

• A.R2: change of topology in substation S1 

(time limit 09:40 AM) 

• A.R3: limitation of RES generation (costly, 

time limit 09:50 AM) 

AI assistant indicates A.R2 seems the best 

option. 

 

Note: it is more interesting to have both 

preventive and curative remedial actions 

AI assistant Human 

operator 

AIR (left empty) 

4 Time limit for 

remedial action 

R1 is reached 

The AI assistant 

raises an alert 

Example of context: 

At 08:15 AM, the AI assistant indicates that 

1.R1's time limit is reached 

AI assistant Human 

operator 

AIAL (left empty) 

5 Operator's 

decision 

The operator 

decides to ignore the 

recommendation R1 

Example of context: 

The operator decides to ignore A.R1 and wait 

Human 

operator 

AI assistant D (left empty) 

6 Time limit for 

preparing the 

planned outage is 

reached 

The AI assistant 

raises an alert 

Example of context: 

The 2 actions required for planned outage 

beginning at 09.00 AM have to be done in time 

AI assistant Human 

operator 

AIAL (left empty) 

7 Operator's action The operator 

prepares planned 

outage 

Example of context: 

The operator implements action P1: 

• Simulation of flows with changed topology 

• Action list to change the topology 

Human 

operator 

Environment HA (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

Requirement 

8 Unplanned event An unplanned 

outage is needed 

Example of context: 

At 08:45 AM, the operator receives a call from 

the maintenance team. 

The risk of an explosion of measuring 

equipment requires an urgent (ASAP) and 

unplanned outage. 

The operator stops the ongoing actions for the 

planned outage to deal with the urgent outage 

and calls the maintenance team in charge of 

the planned outage to indicate that he has to 

stop due to another urgent outage. 

 

Note: unplanned outage could concern either: 

• a busbar: the interest is that this outage 

could impact in turn the list of possible 

remedial actions, but it might not be 

realistic to implement it effectively, 

• or a line, which is a simpler case. 

Environment AI assistant E (left empty) 

9 Action 

recommendations 

The human operator 

processes the 

recommendations 

Example of context: 

According to the current hypothesis, the 

outage would result in overload in the N-1 

situation at 08:50 (due to the new topology 

following the urgent outage). 

The AI assistant proposes different possible 

remedial actions: 

• B.R1: change of topology in substation S1 

• B.R2: change of topology in substation S2 

AI assistant indicates B.R2 would make A.R2 

remedial action unavailable 

AI assistant Human 

operator 

AIR (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

Requirement 

10 Operator's 

decision 

The operator 

decides to 

implement an action 

Example of context: 

The operator goes for action B.R1 

 

Note: other combinations of cross-impacts 

could be imagined, for example, cases where 

the only possibility is that A.R2 remedial action 

becomes unavailable and the only possible 

choice is A.R1 

Human 

operator 

AI assistant D (left empty) 

11 Operator's action The operator 

prepares unplanned 

outage 

Example of context: 

The operator performs the urgent outage and 

implements remedial action B.R1 

The operator calls the maintenance team in 

charge of the unplanned outage so that the 

urgent work can start. 

 

Note: to be detailed according to what type of 

grid element is concerned by the outage 

Human 

operator 

Environment HA (left empty) 

12 Action 

recommendations 

The human operator 

processes the 

recommendations 

Example of context: 

At 09:00 AM, the AI assistant proposes to 

continue with the remaining actions to prepare 

for the planned outage of line L0 

AI assistant Human 

operator 

AIR (left empty) 

13 Operator's 

decision 

The operator 

decides to 

implement an action 

Example of context: 

The operator decides to continue with the 

remaining actions to prepare planned outage 

of line L0 

Human 

operator 

AI assistant D (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

Requirement 

14 Operator's action The operator 

prepares planned 

outage 

Example of context: 

The operator confirms with DSO that action P2 

can be performed 

The operator implements action P2: 

• Topology with the simulation of agreed 

load transfer from DSO 

• DSO contact information 

The operator fully disconnects line L0 

At 09:20 AM, the operator confirms to the 

maintenance team that the maintenance work 

can start. 

Human 

operator 

Environment HA (left empty) 

15 Time limit for 

remedial action 

R2 is reached 

The AI assistant 

raises an alert 

Example of context: 

At 09:40 AM, overload is still forecasted and 

A.R2's time limit is reached 

AI assistant Human 

operator 

AIAL (left empty) 

16 Operator's 

decision 

The operator 

decides to 

implement an action 

Example of context: 

Given that A.R2 is the only available action, 

the operator decides to perform A.R2 

Human 

operator 

AI assistant D (left empty) 

17 Operator's action The operator 

implements an 

action 

Example of context: 

The operator implements A.R2 

Human 

operator 

Environment HA (left empty) 
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4.3 Steps of scenario 2 

Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

1 Start Run episodes where 

the AI assistant 

provides 

recommendations 

The AI assistant is acting on new episodes that 

were not seen during training 

(empty) (empty) (empty) (empty) 

2 Action 

recommendations 

The human operator 

processes the 

recommendations 

(per episode) 

The AI assistant proposes action 

recommendations to the operator 

AI assistant Human 

operator 

AIR (left empty) 

3 Operator's 

decision 

The operator decides 

to implement an 

action 

(per episode) 

The operator decides to take remedial action. 

Human 

operator 

AI assistant D (left empty) 

4 Operator's 

preference 

learning 

The AI assistant logs 

human operator's 

preferences 

(per episode) 

All operator's decisions are logged for the AI 

assistant's learning 

Human 

operator 

AI assistant D (left empty) 

5 Evaluation The AI assistant's 

learning is evaluated 

All new episodes are rerun with an AI assistant 

trained on these new episodes. 

The result is compared with the AI assistant not 

trained in these new episodes.  

(empty) (empty) (empty) (empty) 

 

 

4.4 Steps of scenario 3 

Step 

no. 

Event Name of 

process/ activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

1 Start Run a scenario 

where the AI 

assistant provides 

recommendations 

Use scenario 1 from the use case Power Grid 

Assistant 

(empty) (empty) (empty) (empty) 
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Step 

no. 

Event Name of 

process/ activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

2 Operator's 

decision 

The operator 

decides to 

implement an 

action 

The human operator doesn't choose the remedial 

action recommended by the AI assistant. 

Human 

operator 

AI assistant D (left empty) 

3 Operator's action The operator 

implements an 

action 

The operator implements the remedial action Human 

operator 

Environment HA (left empty) 

4 AI assistant's 

instant analysis 

The AI assistant 

provides feedback 

on actions 

performed 

The AI assistant provides feedback on actions 

performed by the human operator with KPIs 

comparing the initially recommended action and 

the action chosen by the operator. 

AI assistant Human 

operator 

AIAN (left empty) 

5 Replay of 

scenario 

Go back to step #1 The human operator wants to replay the scenario (empty) (empty) (empty) (empty) 

6 Action 

recommendations 

The human 

operator processes 

the 

recommendations 

The AI assistant provides recommendations AI assistant Human 

operator 

AIR (left empty) 

7 Recommendation 

simulation 

The human 

operator asks for 

action simulation 

The human operator chooses the recommended 

action to see its effects / or another 

recommendation. 

The AI assistant provides simulated results of the 

recommended action 

AI assistant Human 

operator 

AS (left empty) 
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5 Information exchanged 

Information 

exchanged 

(ID) 

Name of information Description of information exchanged 

HA 
Action implemented by 

human operator 
Action (e.g., topology) implemented by human operator. 

AIAL AI assistant alert 

AI assistant alerts for an overload occurring on one or 

several grid elements. 

AI assistant alert for reached time limit of a given action. 

AIAN AI assistant analysis 
The AI assistant provides feedback on actions performed to 

the human operator. 

AIR 
AI assistant 

recommendations 
List of remedial action recommended by the AI assistant 

D 
Decision from human 

operator 
Human operator’s choice 

E Environment information 

Information on the environment, e.g., outages. 

In case an adversarial agent is used to model 

unplanned events, this information would be replaced 

by an “adversarial attack”. 

NRA New remedial action Remedial action that is not known by the AI assistant 

 

6 Requirements 

Requirements  

Categories 

ID 

Category name for 

requirements 

Category description 

Ro Robustness 

It encompasses both its technical robustness (the ability of 

a system to maintain its level of performance under a 

variety of circumstances) as well as its robustness from a 

social perspective (ensuring that the AI system duly takes 

into account the context and environment in which the 

system operates). This is crucial to ensure that, even with 

good intentions, no unintentional harm can occur. Source: 

EU-U.S. Terminology and Taxonomy for Artificial 

Intelligence. First Edition 

E Efficiency 

The ability of an AI system to achieve its goals or perform 

its tasks with optimal use of resources, including time, 

computational power, and data. 

I Interpretability 

Make the behavior and predictions of AI systems 

understandable to humans, i.e., the degree to which a 

human can understand the cause of a decision. Source: 

Molnar, Christoph. Interpretable machine learning. Lulu. 

com, 2020. 

Re Regulatory and legal 

The AI system's capacity to meet its objectives while 

complying with relevant laws, regulations, and ethical 

standards. 

HAO 
Human Agency and 

Oversight 

The design phase involves including mechanisms for 

human intervention and ensuring that people can easily 

understand and monitor AI systems. During deployment, it 

means continuous monitoring and evaluation to ensure 

that the systems act within their ethical boundaries. 
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DG Data governance 

Rules, processes, and responsibilities to drive maximum 

value from data-centric products by ensuring applicable, 

streamlined, and ethical AI practices that mitigate risk and 

protect privacy. 

FAIR 
Non-discrimination 

and fairness 

This means that AI systems are developed and used in a 

way that includes diverse actors and promotes equal 

access, gender equality, and cultural diversity while 

avoiding discriminatory impacts and unfair biases that are 

prohibited by Union or national law. Source: EU AI Act 

Acc Accountability 

Relates to an allocated responsibility. The responsibility 

can be based on regulation or agreement or through 

assignment as part of delegation. In a systems context, 

accountability refers to systems and/or actions that can be 

traced uniquely to a given entity. In a governance context, 

accountability refers to the obligation of an individual or 

organization to account for its activities, to complete a 

deliverable or task, to accept the responsibility for those 

activities, deliverables, or tasks, and to disclose the results 

transparently. Source: EU-U.S. Terminology and 

Taxonomy for Artificial Intelligence. First Edition  

Requirement 

R-ID 

 

Requirement name Requirement description 

Ro-1 
Keep electrical grid 

security 

The AI assistant monitors all the contingencies in the list 

and recommends valid actions that consider all relevant 

operational constraints to keep the electrical grid operating 

in a secure state. Thus, the physical constraints and 

operational limits of the electrical network should be 

passed to the AI system. 

Ro-2 

AI informs the human 

operator about its 

confidence in the 

output 

recommendation (self-

awareness) 

Confidence of the recommendation is given by the AI 

assistant: Is the event really “well known” by the model 

thanks to its training? or is it out of distribution, and then 

few or no relevant recommendations can be given? The AI 

assistant shall indicate its confidence in the effectiveness 

of its recommendations with clear information, such as 

green, orange, or red indicators. 

Ro-3 Fault tolerance 

The AI system must maintain seamless grid operation 

despite potential failures or malfunctions within the AI 

infrastructure. This requires establishing robust, 

thoroughly tested, and efficient fallback mechanisms to 

ensure uninterrupted functionality. 

Ro-4 

Reproducibility and 

traceability of 

recommendations for 

post-mortem analysis  

All recommendations made by the AI system must be 

reproducible at a later point, given the same input or 

specific context/conditions. While the actions 

recommended by the system do not need to be identical in 

a strict mathematical sense - acknowledging the variability 

inherent in distributed computing environments - they 

should be closely aligned and functionally equivalent, 

ensuring reliable and predictable outcomes under similar 

conditions. Moreover, it should be possible to trace back 

which AI model or rules led to the decision(s) or 

recommendation(s) of the AI system, which is very 

relevant for audits from the Energy Regulator. 
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Ro-5 

Adaptability to 

different operating 

conditions 

The system should be able to adapt to different scenarios 

or operational conditions without significant degradation in 

performance (i.e., maintain appropriate levels of stability). 

The scenarios considered are related to the training 

examples but are particularly challenging. 

Ro-6 
Do not increase 

cybersecurity risk 

The AI assistant should not increase the system's overall 

cybersecurity risk level. It must be closed to adversarial 

attacks from external parties so that no control is taken 

over the information provided to the human operator. It 

must also be designed to prevent any communication with 

commands of grid components (e.g., opening of circuit 

breakers).  

Ro-7 

Keep acceptable 

performance levels 

under natural or 

adversarial 

perturbations during 

operation 

The training of the AI system should include scenarios with 

natural or adversarial perturbations in its input/state 

vector, which can originate from missing or erroneous 

values from the environment (or adversarial attacks from 

agents). 

Ro-8 

Robustness to attacks 

targeting model space 

and reward function 

Reward functions and models should be stored and 

operated in highly cyber-secure Information Technology 

(IT) systems. In the event of an attack, the previously 

trained model could be quickly restored. Model training 

should be done in a secure and controlled digital 

environment, and model retraining is possible. 

Ro-9 
Detect changes in AI 

behavior 

Changes in the AI system should be auditable and 

controlled by humans. Nevertheless, several supervised 

and reinforcement learning algorithms have online 

learning, and it might be difficult to evaluate or detect 

changes in the AI system. Thus, automatic mechanisms 

are required to detect data and model shifts. 

E-1 
Relevance of the 

recommendations 

The AI assistant often becomes confident in its ability to 

propose relevant recommendations to solve situations and 

limits its number of warnings to the human operator to help 

him focus his/her attention. 

E-2 
Computational 

efficiency 

The AI system must be designed to ensure efficient 

training and inference capabilities on various computer 

hardware, from small-scale development setups with 

limited processing power to configurations involving 

multiple servers and GPUs. 

E-3 Scalability 

The AI system’s training and inference methodology and 

algorithms must be designed to scale up for applications in 

large and realistic electrical networks. 

E-4 
Adequate training 

environment 

AI-friendly digital environments should be used to train the 

AI system, which generates high-quality representative 

data of the environment where the system will be 

deployed. However, the transfer of knowledge from 

simulation to the real environment should be carefully 

designed – see UC2.Power Grid “Sim2Real, transfer AI-

assistant from simulation to real-world operation”.  

I-1 Action rating 

Frame recommendations into different 

scenarios/strategies, and rate these scenarios based on 

their consequences, e.g., identify a “robust” strategy that 

could work in all cases or a “no regret” strategy.  
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I-2 
Transparency during 

system training 

The AI system must exhibit high transparency in its 

decision-making processes. This necessitates that 

documentation on the system’s training data, training 

methods, and scenarios is available and understandable to 

relevant stakeholders. 

I-3 

Capacity to explain 

recommendation(s) to 

the human operator 

(and other 

stakeholders) 

Depending on the type of AI model used, different options 

are possible, such as (non-exhaustive list): a) empirically 

compare the outcomes of various strategies and evaluate 

the proposed recommendations against predefined KPIs; 

b) relate the recommendations with features importance of 

the state/input vector; c) use inherently interpretable 

models and/or knowledge distillation to explain the 

decisions of a more complex/large model. A trade-off 

between accuracy and interpretability needs to be 

evaluated. 

I-4 

Adaptability to 

different levels of 

interaction and human 

operator preferences 

and experience 

Each operator has its own preferences (e.g., one operator 

can be more risk averse than others): ideally, the AI 

assistant interacting with a given operator could provide 

decision support that fits the preferences of this operator 

but is not necessary of another, especially given the type 

of situation that can require more attention. Thus, the AI 

system shall be able to interact with the human operator 

according to his/her preferences and experience, such as 

a) fully manual, b) get notified every time an overload is 

detected, and c) only get notified when the AI assistant is 

not confident enough. 

Re-1 

Compliance with 

existing operational 

policies 

The AI assistant's recommendations comply with 

operational policies and network codes for power grids. 

Re-2 European AI Act 

The AI system must be prepared to comply with the 

regulations and standards stipulated in the European AI 

Act. This compliance involves adhering to the defined 

transparency, safety, data governance, and accountability 

requirements. 

Re-3 

Transparency to 

humans in terms of 

interaction with an AI 

system 

The human operator should be aware of their interaction 

with an AI or another human. In this case, operators are 

advised of the AI assistant and, hence, not be confused 

about whether they interact with a human or AI system. 

Acc-1 

Allow audits for the AI 

recommendations and 

human operator 

actions 

Audits are to be expected, though no formal assessment 

process is available for software in the power grid domain. 

The regulator will look at the case if a grid user or 

electricity market agent has a complaint. This is strongly 

related to requirements Ro-4 and I-3. 

Acc-2 

Reporting of potential 

vulnerabilities, risks, 

or biases 

A database with vulnerabilities, risks, and biases, similar 

to AI Vulnerability Database should be created. However, 

the vulnerabilities and risks of other systems, e.g., 

SCADA, should be evaluated together due to 

interdependencies with the AI system (e.g., source of input 

data). 

HAO-1 
Mitigate addictive 

behavior from humans 

The AI system should operate as a recommender (i.e., one 

more additional tool to support the human operator's 

decisions), and all the decisions should be solely taken by 

the human operator (human-in-command approach). The 

AI assistant shall not create a craving among the operators 

to use it. On the other hand, we should maintain credibility 

and intimacy between the operator and the AI system.  

https://avidml.org/
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HAO-2 
Mitigate de-skilling in 

the human operators 

The usage of the AI system must not lead to de-skilling in 

the human operators. This requires new metrics that 

monitor workers’ skill levels and provisions for actions to 

compensate workers’ de-skilling. Furthermore, a higher 

knowledge of the fundamentals behind the AI system can 

help human operators understand the decision-support 

process. 

DG-1 
Processing of human 

operator data 

The AI system can use historical data about human 

operator actions, employing techniques such as imitation 

learning. However, it is imperative that this data undergoes 

complete anonymization, as the identification of individual 

operators is unnecessary. Including action timestamps is 

mandatory, ensuring compatibility with a table of operator 

shifts. Consequently, even when cross-referenced, it 

should remain impossible to discern the operator's identity 

or correlate specific actions with individuals (including 

performance metrics). Additionally, the knowledge 

database must exclude any actions characterized by poor 

performance. 

FAIR-1 

Avoid creating or 

reinforcing unfair bias 

in the AI system 

The system must not unfairly favor specific producers or 

consumers of electrical energy. A level playing field in the 

electricity market, as well as fair competition, must be 

provisioned. Measures must be implemented to ensure 

these fairness constraints are observed. 

Note that: 1) Occurring bias may very well originate from 

technical or physical limitations of electrical grid 

operations and hence may (in part or wholly) not be 

avoidable. 2) Requiring the AI system to adhere to fairness 

standards that are not required from existing alternative 

techniques may put it at a disadvantage, especially if 

those originate from the source of the previous issue. 

FAIR-2 
Regular monitoring of 

fairness 

Using the physical equations of the power grid, it is 

possible to compare the decisions made by the AI system 

and the impact that other grid users would have in solving 

the technical problem. For instance, ex-post, it is possible 

to run an optimal power flow with the redispatch costs and 

compare its solution with the AI system. Having a least-

cost solution is the primary goal. Metrics such as Jain’s 

fairness index have been used to evaluate fairness in load 

shedding29 and fairness in renewables' curtailment30. 

 

7 Common Terms and Definitions 

Common Terms and Definitions 

Term Definition 

TSO – Transmission 

System Operator 

A natural or legal person is responsible for operating, ensuring the 

maintenance of, and, if necessary, developing the transmission 

system in a given area and, where applicable, its interconnections 

with other systems and for ensuring the long-term ability of the 

system to meet reasonable demands for the transmission of 

electricity. Source: Directive 2009/72/EC and ENTSOE glossary 

 
29 F. Moret and P. Pinson, “Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets,” IEEE Trans. Power Syst., vol. 34, no. 5, pp. 3994–4004, Sep. 2019. 

30 M. Z. Liu Liu, A. T. Procopiou, K. Petrou, L. F. Ochoa, T. Langstaff, J. Harding, and J. Theunissen, “On the Fairness of PV Curtailment Schemes in Residential Distribution Networks,” IEEE 
Trans. Smart Grid, vol. 11, no. 5, pp. 4502–4512, 2020.   
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SCADA - Supervisory 

Control And Data 

Acquisition 

A system of different hardware and software elements that come 

together enables a power grid operator to monitor and control 

various components of a power system in real time, such as 

generators, transformers, and transmission lines. 

EMS – Energy 

Management System 

Optimal control center solution enables secure, efficient, and 

optimized electric power system operation. 

Nominal grid (“N” 

situation) 
Network operating condition where all grid elements are available 

Contingency (“N-1” 

situation) 

Electric system’s state after the loss of one grid element, and 

possibly several grid elements, depending on the TSO’s policy  

Load (or power) flow 

calculation 

Calculations are used to determine the voltage, current, and real 

and reactive power at various points in a power system under 

steady-state conditions. 

Line’s load 

It is defined as the observed current flow divided by the thermal 

limit of each powerline (no unit): the value is within [0; 1] interval.  

A line’s load is associated with a line for a given state: it is 

therefore referred to as “N line’s load” or “N-x line’s load”. 

Note: this measure is referred to as “rho” in Grid2Op digital 

environment 
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UC2.POWER GRID: SIM2REAL, TRANSFER AI-ASSISTANT FROM SIMULATION TO 

REAL-WORLD OPERATION 

1 Description of the use case 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC2.Power Grid Power grid 
Sim2Real, transfer AI-assistant from simulation to real-

world operation 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 29.01.2024 
Bruno Lemetayer 

(RTE) 

Initial document (copy from last version of 

short template document) 

0.2 01.03.2024 
Bruno Lemetayer 

(RTE) 
Process of all workshop’s feedback 

0.3 05.04.2024 
Bruno Lemetayer 

(RTE) 
Preparation of final version 

0.4 11.04.2024 
Bruno Lemetayer 

(RTE) 
Finalization of the document 

0.5 20.04.2024 
Ricardo Bessa 

(INESC TEC) 

Final review and inclusion of non-functional 

requirements 

0.6 24.04.2024 
Cyrill Ziegler 

(FHNW) 
Insertion of Human Factors KPI’s 

1.0 08.07.2024 
Ricardo Bessa 

(INESC TEC) 
Final version 

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope 

Power grid real-time operation and operational planning (hours-ahead). It integrates 

the global concept of the assistant framework (developed in UC1.Power Grid) and 

deepens a specific “real world” complication (in comparison, UC1.Power Grid has a 

more “theoretical” vision). 

Objective(s) 

This use case is to assess the capability of an AI assistant to be used for the 

operation of a “real” transmission grid, in the sense that the “real” environment 

doesn’t exactly behave as the one available to the agent (that is implemented in the 

AI assistant) during training and simulation procedures, even if they share the same 

functional properties (same grid components and topology), and operational 

constraints. Therefore, Sim2Real stands for “Simulation to Reality”.  

The main objectives are: 

1. Look at additional technical considerations to succeed at deploying an AI 

assistant in the real world besides its sole ability to find solutions to 

simulated situations. 

2. Improving human trust when such systems are deployed in real-world 

environments. 
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3. Allowing for iterative human-AI refinements with human feedback and 

insights. 

Deployment 

model 

Possible deployment models of AI considered in ISO/IEC TR 24030: cloud services, 

on-premises systems, 

1.4 Narrative of use case 

Narrative of Use Case 

Short description 

The use case outlines two paths for an AI assistant to manage a transmission grid:  

A) In coping with real-world conditions, the AI assistant monitors grid situations, raises alerts for 

human intervention, and provides action recommendations, considering uncertainty coming from 

bad or low-quality data (e.g., partially missing). The human operator makes decisions based on 

AI suggestions, with feedback loops to continuously improve interactions and learn from realized 

actions. 

B) When data limitations prevent full autonomy, the AI assistant alerts the human operator due to 

missing or poor-quality data. The human operator may also choose actions that do not yield 

expected results due to various factors. In such cases, the operator can provide missing 

information to aid the AI. Enriched context, including human input and decisions, is logged for 

continuous learning, enhancing the AI assistant’s robustness in making recommendations for grid 

actions. 

This use case only addresses congestion issues, even if other types of issues can arise on the 

Transmission Grid and are handled by the operators (e.g., voltage).  

Note 1: This use case is linked with the broader notion of “transfer learning”, which is the possibility 

to adapt a pre-trained model to a new environment only with a slight additional training. One of 

the possible associated research questions is to evaluate the minimum amount of real data that 

would be needed to align a model with the “real world”. In the context of this use case, transfer 

learning won’t be applied, and the model trained in the context of the Power Grid Assistant use 

case will be used.  

Note 2: As for the AI-assistant training, the human operator’s decision and perception will rely on 

"theoretical simulations" (training and simulation tools).  

Complete description 

The use case can be divided into two paths: 

 

A. The AI assistant copes with real-world conditions 

The AI assistant can still carry out its role and provide the human operator with action 

recommendations, even if data is not of good quality as in training.  

 

6. The AI assistant monitors the transmission grid situation [same as in UC1.Power Grid] 

 

7. When anticipating issues requiring intervention, the AI assistant raises alerts for decisions 

at the appropriate horizon (e.g., a few hours ahead to 30 minutes ahead) to the human 

operator in time for carrying out corresponding actions [same as in UC1.Power Grid] 

The action recommendations from the AI assistant will reflect the additional uncertainty 

due to bad-quality data and the sensitivity to uncertainty. 

 

8. For a given alert, the human operator receives action recommendations from the AI 

assistant, with information on the predicted effect and reasons for the decision [same as 

in UC1.Power Grid] 

 

9. The human operator chooses a proposed recommendation, or requests new information 

or explanations, or looks for a different action guided by an exploration agent or via manual 
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simulation using other specific tools (that aren’t part of the AI assistant) [same as in 

UC1.Power Grid] 

 

10. The human operator performs needed actions according to his/her decision [same as in 

UC1.Power Grid] 

 

11. The decisions made are logged with their corresponding context to continuously learn 

from realized actions and improve the interactions between the human operator and the 

AI assistant (e.g., relevance of proposed recommendations for actions) [same as in 

UC1.Power Grid] 

 

B. Real-world conditions require specific interactions between AI assistant and human 

operator 

Available data doesn’t allow the AI assistant to provide the human operator with action 

recommendations in a fully autonomous way and requires the AI assistant to call for additional 

feedback or information from the human operator: the AI assistant raises an inaccuracy alert.  

 

1. The first type of situation is where the AI assistant can’t evaluate the need for action 

due to missing and bad-quality data and thus can’t determine any action 

recommendations. It raises a corresponding alert to the human operator.  

The main reasons can be: 

• Bad or low-quality data: 

o Due to uncertainty because the forecasts aren’t always accurate or even 

available, or uncertainty as “epistemic uncertainty”, which is the model 

uncertainty due to sampling (or underrepresentation) problems 

o The state estimator does not directly use the measurement values but first 

goes through a readjustment. This means that the raw measurement values 

from the Energy Management System (EMS) can’t be directly used to 

compute the load flow because the needed adaptations (missing or wrong 

measurement values due to, e.g., measurement device issues) performed by 

the state estimator will be missing. 

• Evolution of the electric system: trends such as higher renewable penetration or 

consumer behavior change (adaptation) that shift data distribution over the years.  

 

2. The second type of situation is where a recommended action doesn’t have the expected 

consequences on the transmission grid’s state.  

The main reasons can be: 

• Reproducibility of remedial actions, one or several prerequisites needed to perform 

an action recommended by the AI-assistant are missing due to: 

o Device failure (e.g., the failure of a circuit breaker might prevent changing the 

topology as proposed). 

o Unavailability of flexibility (that might prevent performing planned 

redispatching). 

• Real-time behavior of the transmission grid is significantly different from simulation 

due to: 

o Different load flow calculation than the one available at training and inference 

time. 

o Add or upgrade new elements on the grid: substations, lines, etc., even 

automatic devices. 

o Distributed energy resources (DER) can impact grid congestion and decision-

making since they can be a source of additional complexity and difficulty: a 

model might not be able to analyze or predict the real-world cumulative effect 

of smaller grid-connected assets. 

o changing grid equipment characteristics (e.g., climate impact or DLR).  
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o transient grid dynamics that steady state simulation doesn't capture, for 

example, in the context of a windstorm. 

o cyber-physical considerations with the integration and modeling of more 

automatic devices. 

 

3. When the AI assistant can’t evaluate the need for action, or a recommended action doesn’t 

have the expected consequences, the human operator can provide the AI assistant with 

specific missing information to help the AI assistant forecast system state and assess 

action recommendations. 

This is only possible if the human operator can easily provide missing information to the 

AI assistant (i.e., it doesn’t generate an important additional workload), e.g., the status 

(open/closed) of a given busbar coupler.  

 

4. The difference between the original context used by the AI assistant and the enriched 

context is logged to continuously learn from realized actions and improve the robustness 

and novelty of recommendations for actions by the AI assistant.  

Enriched context includes at least: 

• information given by the human operator. 

• Decisions are made by the human operator (visible as topology changes or other 

actions on the transmission grid). 

Stakeholders 

See UC1.Power Grid  

Stakeholders’ assets, values  

See UC1.Power Grid 

System’s threats and vulnerabilities  

Human manipulation: Human operators with malicious intent may attempt to manipulate the AI 

system by providing misleading feedback or deliberately misusing the AI learning process. It is 

important to ensure that this co-learning process complies with regulatory requirements and 

industry standards for power grid management. 

Adversarial data attacks: Malicious actors might attempt to manipulate the AI system by introducing 

misleading data or injecting false information into the recommendation process, e.g., feeding deceptive 

information about the state of a particular grid node, causing it to recommend inefficient solutions or 

worsening congestion; or, injection of a sequence of false information to flood the human with requests 

during peak grid operation times. 

Trust from human operators: The operational performance of the AI assistant will not be close to 

100% of problems solved, which may hinder the confidence and trust of the human operator in the AI 

recommendations. This will introduce a negative cognitive bias in humans.  

1.5 Key performance indicators (KPI) 

Note: the table below is intended to give an exhaustive list of possible KPIs. This list will be narrowed 

down during the course of the project, and especially during WP4 for evaluation works.  
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Name Description 

Reference to the 

mentioned use 

case objectives 

Technical 

robustness to 

real-world 

imperfections 

Describes the ability of the AI system to maintain its 

performance level under natural or adversarial 

perturbations, namely bad or low-quality data, or when 

recommended action does not have the expected impact 

on the transmission grid’s state. This KPI can be quantified 

by comparing the technical performance of the AI assistant 

without and with the perturbations, using KPIs from 

UC1.Power Grid. From those KPIs, the following metrics 

(or properties) can be computed: 

1) The extent to which the output of the AI system or a 

specific KPI (e.g., operation score) varies with the 

perturbations, e.g., measured with the output/KPI variance 

and/or average difference.  

2) Assess whether a particular decision holds for input 

variation (data quality issue) in the same context.  

During the training-time of the AI assistant, the slope of the 

reward/loss function deterioration can also be used to 

measure technical robustness. 

Objectives: 1,2,3 

Resilience to 

real-world 

imperfections 

Ability to prepare for and adapt to changing conditions and 

withstand and recover (to a “normal” state) rapidly from 

natural or adversarial perturbations or unexpected 

changes. The quantification of this KPI can be made with 

the magnitude and/or duration of reward/loss function 

performance degradation compared to an unperturbed 

system for the same context. It can, for instance, be 

measured by the area between the reward curves of the 

unperturbed and perturbed AI system. This can be 

computed during training or operational testing time.   

Objectives: 1,2,3 

Transferability 

across fidelity 

levels 

Measures how effectively a policy or model trained in one 

environment (low-fidelity simulation) performs when 

applied to different environments (e.g., high-fidelity 

simulation or real-world operation).  

Evaluated by directly applying the policy trained in a low-

fidelity simulation to a high-fidelity simulation and 

measuring its effectiveness by computing the KPIs from 

UC1.Power Grid. 

Objectives: 1,2,3 

Generalization 

to different grid 

operating 

conditions 

The ability of a policy to perform well in an unseen grid 

operation condition that was not part of the training 

experience. Tested by exposing the previously trained AI 

system to different environments with changed grid 

elements and observing how well it adapts and performs 

by determining the KPIs from UC1.Power Grid. 

Objectives: 1,2,3 

Assistant 

disturbance 

It aims to measure if the notifications raised by the AI 

assistant are disturbing the activity of the human operator. 

For each notification, the score ranges in [0, 5] with:  

• 0 meaning that the notification was not considered 

disturbing at all by the human operator,  

• 5 meaning that the notification was considered as fully 

disturbing by the human operator. 

Objectives: 3 
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Name Description 

Reference to the 

mentioned use 

case objectives 

Workload 

It is based on a workload assessment of the AI assistant 

by the human operators. It shall be determined according 

to the NASA-TLX31 methodology or similar32. 

Objectives: 3 

Assistant self-

awareness 

It is based on the number of times the AI assistant agent is 

right about its ability to perform action recommendations 

ahead of time. Moreover, a confusion matrix can be 

calculated to show: 

• True positive cases: AI assistant raises inaccuracy 

alert indicating it has insufficient data to estimate the 

state of the grid and it actually doesn’t have the 

required data, 

• False positive cases: AI assistant raises inaccuracy 

alert indicating it has insufficient data to estimate the 

state of the grid, but it actually does have the required 

data (i.e., it should be confident, but it isn't) 

• False negative cases: AI assistant doesn’t raise 

inaccuracy alert, but in reality, it can’t properly assess 

the situation (i.e., is falsely confident) 

Note: This KPI is the adaptation of the “Assistant alert 

accuracy” KPI of UC1 “Power Grid Assistant” 

Objectives: 3  

Trust towards 

the AI Tool 

“(Dis)trust is defined here as a sentiment resulting from 

knowledge, beliefs, emotions, and other elements derived 

from lived or transmitted experience, which generates 

positive or negative expectations concerning the reactions 

of a system and the interaction with it (whether it is a 

question of another human being, an organization or a 

technology)” (Cahour & Forzy, 2009, p. 1261).  

The human operators' trust towards the AI tool can be 

measured using the Scale for XAI (Hoffman et al., 2018) or 

similar.  

Objectives: 2,3 

Human 

motivation 

“Intrinsic motivation is defined as the doing of an activity 

for its inherent satisfaction rather than for some separable 

consequence. When intrinsically motivated, a person is 

moved to act for the fun or challenge entailed rather than 

because of external products, pressures, or rewards” 

(Ryan & Deci, 2000, p. 54). 

The human operators perceived internal work motivation 

can be measured by using the Job Diagnostic Survey 

(Hackman & Oldham, 1974) or similar. The questionnaire 

needs to be adapted to the AI context (e.g., problem 

detection with AI-assistance). 

Objectives: 2,3 

 
31 https://humansystems.arc.nasa.gov/groups/tlx/index.php 

32 See more recent works about design recommendations to create algorithms with a positive human-agent interaction and foster a pleasant user-experience: 
http://hdl.handle.net/1853/61232  

https://humansystems.arc.nasa.gov/groups/tlx/index.php
http://hdl.handle.net/1853/61232
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Name Description 

Reference to the 

mentioned use 

case objectives 

Human control/ 

autonomy over 

the process 

“Autonomy is the degree to which the job provides 

substantial freedom, independence, and discretion to the 

employee in scheduling the work and in determining the 

procedures to be used in carrying it out” (Hackman & 

Oldham, 1975, p. 162). It consists of three interrelated 

aspects centered on freedom in decision-making, 

work methods and work scheduling (Morgeson & 

Humphrey, 2006). Parker and Grote (2022) view job 

autonomy interchangeably with job control. 

The human operator's perceived autonomy over the 

process can be measured by using the Work Design 

Questionnaire (Morgeson & Humphrey, 2006) or similar. 

The questionnaire needs to be adapted to the AI context 

(e.g., problem detection with AI assistance). 

Objectives: 2,3 

Human 

learning 

Human learning is a complex process that leads to lasting 

changes in humans, influencing their perceptions of the 

world and their interactions with it across physical, 

psychological, and social dimensions. It is fundamentally 

shaped by the ongoing, interactive relationship between 

the learner's characteristics and the learning content, all 

situated within the specific environmental context of 

time and place, as well as the continuity over time 

(Alexander et al., 2009). 

The human operators perceived learning opportunities 

working with the AI-based system can be measured by 

using the task based workplace learning scale (Nikolova et 

al., 2014) or similar. The questionnaire needs to be 

adapted to the AI context. 

Objectives: 2,3 

Decision 

support for the 

human 

operator 

Decision support tools should be aligned with the cognitive 

the decision-making process that people use when making 

judgments and decisions in the real world and ensure that 

the human operator retains agency (Miller, 2023). AI 

decision support tools should therefore help people to 

remain actively involved in the decision-making process 

(e.g. by helping them critique their own ideas) (Miller, 

2023). 

The decision support for the human operator can be 

measured based on the criteria for good decision support 

(Miller, 2023) or similar. The instrument needs to be 

further developed. 

Objectives: 2,3 
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Name Description 

Reference to the 

mentioned use 

case objectives 

Ability to 

anticipate 

“The ability to anticipate. Knowing what to expect, or being 

able to anticipate developments further into the future, 

such as potential disruptions, novel demands or 

constraints, new opportunities, or changing operating 

conditions” (Hollnagel, 2015, p. 4). 

The human operator’s ability to anticipate further into the 

future can be measured by calculating the ratio of 

(proactively) prevented deviations to actual deviations. In 

addition, the extent to which the anticipatory sensemaking 

process of the human operator is supported by an AI-

based assistant can be measured by using the Rigor-

Metric for Sensemaking (Zelik et al., 2010) or similar. The 

instrument needs to be further developed and adapted to 

the AI 

context. 

Objectives: 2,3 

Situation 

awareness 

“Situation Awareness is the perception of the elements in 

the environment within a volume of time and space; the 

comprehension of their meaning and the projection of their 

status in the near future” (Endsley, 1988, p. 12).  

The human operator’s situation awareness can be 

measured by using the Situation Awareness Global 

Assessment Technique (SAGAT) (Endsley, 1988) or 

similar. 

Objectives: 2,3 

1.6 Features of use case 

Task(s) Planning, prediction, interactivity, recommendation, inference.  

Method(s) 
Reinforcement learning has been applied to this use case, but other AI 

approaches are possible. 

Platform 
Grid2Op digital environment, completed by an interactive tool allowing human 

operators to interact with the environment and the AI assistant  

 

  

https://github.com/rte-france/Grid2Op
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1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. Operating the power grid is a high-stakes task, and therefore, risk management 

specifically related to AI is fundamental. This standard describes the principles applied to AI, risk 

management framework, and processes. It is intended to be used in connect ion (i.e., provides 

additional guidance for AI) with ISO 31000:2018, Risk management – Guidelines. 

ISO/IEC 24029-2:2023, Artificial intelligence (AI) — Assessment of the robustness of neural 

networks — Part 2: Methodology for using formal methods . Artificial neural networks are generally 

a building block of AI assistants for power grid operation (see results from L2RPN competitions); 

thus, methodologies for using formal methods to assess the robustness properties of neural 

networks are important. This standard is focused on how to select, apply, and manage formal 

methods to prove robustness properties. The technical report ISO/IEC TR 24029-1:2021 

complements this standard and presents an overview of different methods to assess the 

robustness of neural networks. 

ISO/IEC 42001:2023, Information technology – Artificial intelligence – Management system. This 

standard is the world’s first AI management system standard, providing valuable guidance for this 

rapidly changing field of technology. It addresses the unique challenges AI poses, such as ethical 

considerations, transparency, and continuous learning. For organizations, it sets out a structured 

way to manage risks and opportunities associated with AI, balancing innovation with governance.  

IEEE 7000-2021, IEEE Standard Model Process for Addressing Ethical Concerns during System 

Design. This standard defines a framework for organizations to embed ethical considerations in 

concept exploration and development. It promotes collaboration between key stakeholders and 

ensures ethical values are traceable throughout the design process, impacting the operational 

concept, value propositions, and risk management. It is applicable to all organizations, regardless 

of size or life cycle model. 

Standardization requirements 

Assessment of AI robustness should go beyond artificial neural networks (ISO/IEC 24029-2:2023) 

and consider other AI models, as well as the communication of this information to the end-

user/decision-maker and the interaction between AI and the environment.  

1.8 Societal concerns 

Societal concerns 

Description 

Responsibility: Provide the capacity to evaluate the quality of the AI decisions and their 

corresponding impacts in case of low-quality decisions. Provide mitigation mechanisms to ensure 

the security, integrity, validity, and accuracy of the AI assistant.  

Explainability and transparency: Disclose to stakeholders the evaluation methods used to 

assess robustness, explain AI failures (e.g., the impact of input data contamination, 

communications failure), and allow them to submit test cases and adversarial examples.  

Accountability: Mitigate, detect, and correct erroneous or harmful AI decisions when operating 

the model. 

Safety and security: The AI system should perform consistently across different scenarios and 

consider the complexity of the environment in which the AI system will be used. The key question 

is to understand if technology is fit for its purpose and real-world operating conditions. 

Sustainable Development Goals (SGD) to be achieved 

SGD7. Affordable and clean energy / SGD13. Climate action 
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2 Environment characteristics 

See UC1.Power Grid. 

3 Technical details 

3.1 Actors 

Actor Name Actor Description  

AI assistant 

AI agents provide assistance to human operators. It takes information from 

the environment to search for recommendations and aid the human 

operator. In the training phase, it can act on the environment to evaluate its 

recommendations. In the evaluation/testing phase, the actions on the 

environment should be performed by the human operator only.  

Human operator 
A member of TSO’s team is in charge of monitoring the grid and taking action 

on the environment (see “stakeholders” paragraph).  

Environment 

The human operator will interact with the Digital Environment (illustrated in the 

Figure below) and the AI assistant through an interface. It can be a digital 

environment, which is a digital model of the transmission grid, which includes 

unplanned events that are modeled as events appearing in predefined 

moments (defined directly in time series). In a real-world implementation, it is 

the physical environment. 

 

3.2 References of use case 

References 

No. Type Reference Status Impact on use case Originator / 

organisation 

Link  

1 AI 

competition 

Paris Region AI 

Challenge for 

Energy Transition, 

Low-carbon Grid 

Operations, April 

2023  

Public The track 

“Sim2Real” has 

inspired the use 

case 

Paris Region, 

RTE 

Paris 

Region33 

 

 

 
33https://www.iledefrance.fr/toutes-les-actualites/entreprises-et-chercheurs-participez-au-challenge-ia-pour-la-transition-energetique  

https://www.iledefrance.fr/toutes-les-actualites/entreprises-et-chercheurs-participez-au-challenge-ia-pour-la-transition-energetique
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4 Step-by-step analysis of use case 

4.1 Overview of scenarios 

All scenarios happen in an intraday time horizon, meaning not more than a 24-hour forecast period. Scenario 2 is a “nice to have” scenario, which means that it 

is of less priority than the other scenarios for the project.  

 

Notes regarding scenario and environment data: 

• Scenario #1 uses Power Grid Assistant data from Use Case 1, scenario 1,  which is progressively altered (e.g., replace data points by zero or NaN if 

possible). For harder cases, the following modifications could be:  

a. a grid element is added or removed on the zone 

b. generation changes (e.g., increase of RES generation capacity)  

c. the AI assistant is used in a different zone 

• It is specific to scenario #2 

 

Note regarding requirements: The column “requirement” for the scenarios’ steps has been left empty for the moment. That colum n will get more relevant in later 

stages of the integration/development when moving for a field demonstration or to demonstrate a technology with higher maturity.  

 

Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

1 
Adaptation to real-

world conditions  

The AI assistant’s robustness is tested 

on bad or low data. The situation can 

worsen to the point where the 

transmission grid state can’t be 

estimated properly by the AI assistant, 

which can’t propose any action 

recommendation. 

 

Note: other more difficult cases could 

be: 

• new grid elements on the zone 

• the AI assistant is used on a 

different transmission grid than in 

the training phase (transfer 

learning) 

Issues and inconsistencies are 

present in the data, and data 

are also missing. 

Forecasting of transmission 

grid state is challenged or 

can’t even be performed by 

the AI assistant because the 

quality of input data is too low 

and/or the proportion of 

missing data is too high. 

Run scenario 1 from 

the use case Power 

Grid Assistant 

The recommendations 

from the AI assistant 

make the human operator 

aware of the sensitivity to 

the uncertainty of 

recommended actions. 

 

All new episodes are 

rerun with an AI assistant 

trained on the episodes 

with altered perception. 

The result is compared 

with AI assistants not 

trained in these 

conditions. 
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Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

2 

(Nice-to-have 

scenario) 

 

Additional information 

from the human 

operator 

The effect of actions recommended by 

the AI assistant is challenged by 

unexpected events or dynamics, like 

the shift of distribution (in this scenario, 

RES generation). Due to the magnitude 

of change, specific information is 

needed from the human operator. 

 

Note 1: a subcase could be added 

where the human operator is not able 

to provide information to the AI 

assistant. 

 

Note 2: other cases could be where one 

or several prerequisites (e.g., data) 

needed to perform an action 

recommended by the AI assistant are 

missing or have changed. 

 

Note 3: This scenario shares a lot in 

common with the first scenario of the 

use case Power Grid Assistant. 

However, even if it also includes an 

unplanned event, the one considered is 

a shift of the distribution of RES 

generation pattern, which is not an event 

monitored in the same way as a list of 

predefined outages. In addition, this 

scenario also includes the use of 

additional information from human 

operators by the AI assistant. 

The AI assistant has provided 

one or several action 

recommendations. 

The human operator has 

assessed that the proposed 

actions are not feasible or 

didn’t have the expected 

consequences for the 

transmission grid’s state.  

 

The real-time 

behavior of the 

transmission grid is 

significantly different 

from the simulation. 

 

The AI assistant proposes 

new alternative actions 

with the help of 

information provided by 

the human operator. 
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4.2 Steps of scenario 1 

Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

1 Start Run episodes from 

scenario 1 from the 

use case Power Grid 

Assistant 

AI assistant’s perception of the environment is 

altered. 

 

Harder cases could be: 

• a grid element is added or removed, 

• the AI assistant is used in a different zone 

from the one used in the training 

(empty) (empty) (empty) (empty) 

2 Action 

recommendations 

The human operator 

processes the 

recommendations 

The AI assistant proposes action 

recommendations to the operator 

The recommendations from the AI assistant 

make the human operator aware of the 

sensitivity to the uncertainty of recommended 

actions. 

AI assistant Human 

operator 

AIR (left empty) 

3 Unfeasibility of 

action 

recommendation 

The AI assistant can't 

provide 

recommendations 

The AI assistant can't propose action 

recommendations to the operator and indicate 

the reasons. 

AI assistant Human 

operator 

AIAL (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

4 Evaluation The AI assistant's 

handling of the real 

world is evaluated 

All episodes are rerun with an AI assistant 

trained on the episodes with altered perception. 

The result is compared with AI assistants not 

trained in these conditions to evaluate especially 

what will be the reaction of the human operator 

when working with each assistant. 

 

Note: the following distinction shall be 

between: 

• False Positives: AI assistant doesn’t 

raise inaccuracy alert, but it can’t 

properly assess the situation, 

• False Negatives: The AI assistant 

indicates it has insufficient data to 

estimate the state of the grid, but it 

does have the required data. 

(empty) (empty) (empty) (left empty) 
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4.3 Steps of scenario 2 

For each step, an example of operational business context is given; this will be further detailed during the definition of sc enario data. Here, the scenario starts 

when handling a planned maintenance operation on the grid at the beginning of an operator’s shift (start as scenario 1 from the Power Grid Assistant UC). 

Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

1 Start The human operator 

prepares his/her 

shift 

Example of context: 

At 08:00 AM, the previous operator ended 

his/her shift. 

A planned outage of line L0 starts at 09:00 AM. 

For this planned outage, a load limitation has 

been agreed upon beforehand with DSO on a 

selected set of substations (100 MW max 

load), knowing that this load is netted with 

connected RES generation. 

(empty) (empty) (empty) (empty) 

2 Operator’s action The operator 

prepares planned 

outage 

Example of context: 

The operator calls the DSO to confirm that the 

limitation is implemented before the beginning 

of the outage 

The operator fully disconnects line L0 

The operator confirms to the maintenance 

team that the maintenance work can start. 

Human 

operator 

Environment HA (left empty) 

3 Overload 

forecasted 

The AI assistant 

raises an alert 

Example of context: 

A potential overload is foreseen (N situation) 

starting at 12:00 PM on the line L1.  

This overload, if confirmed, needs remedial 

action (else operational limits would be 

violated) 

AI assistant Human 

operator 

AIAL (left empty) 

4 Action 

recommendations 

The human operator 

processes the 

recommendations 

Example of context: 

AI assistant proposes one possible 

curative remedial action (the same as the 

one foreseen during operational planning 

preparation of the outage): it consists of 

opening a line L2 

AI assistant Human 

operator 

AIR (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

5 Overload alert The AI assistant 

raises an alert 

Example of context: 

The flow on line L1 is increasing and exceeds 

the admissible flow in the N situation  

AI assistant Human 

operator 

AIAL (left empty) 

6 Operator’s 

decision 

The operator 

decides to 

implement an action 

Example of context: 

The human operator decides to perform the 

recommended action and opens the line L2, 

which brings the flow on line L1 back to 

admissible level 

Human 

operator 

AI assistant D (left empty) 

7 Unplanned event Change of 

forecasted flows 

Example of context: 

The flow on the line is different from what is 

forecasted 

This can correspond to real situations, e.g., 

sudden gusts of wind (or, on the contrary, 

sudden drops) 

Environment AI assistant E (left empty) 

8 Overload alert The AI assistant 

raises an alert 

Example of context: 

The flow on the line L1 exceeds again the 

admissible flow in N situation  

AI assistant Human 

operator 

AIAL (left empty) 

9 Action 

recommendations 

The human operator 

processes the 

recommendations 

Example of context: 

AI assistant proposes only one possible 

curative remedial action: load shedding 

AI assistant Human 

operator 

AIR (left empty) 

10 New information 

from human 

operator to AI 

Assistant 

The human operator 

provides additional 

information in the 

context of 

constraint-solving 

Note: a subcase could be added where the 

human operator is not able to provide 

information to the AI assistant  

 

Example of context: 

After analysis, the human operator realizes 

that the load on the agreed substations 

exceeds the agreed volume of 100 MW 

The human operator checks with the DSO that 

one transformer can be opened (no risk of load 

shedding) and adds this as a possible remedial 

action in the AI assistant 

Human 

operator 

AI assistant NINF (left empty) 
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Step 

no. 

Event Name of process/ 

activity 

Description of process/ activity Service Information 

producer 

(actor) 

Information 

receiver 

(actor)  

Information 

Exchanged 

Requirement 

11 Action 

recommendations 

The human operator 

processes the 

recommendations 

Example of context: 

The AI assistant assesses possible actions 

and recommends going for opening the 

transformers 

AI assistant Human 

operator 

AIR (left empty) 

12 Operator's 

decision 

The operator 

decides to 

implement an action 

Example of context: 

The human operator decides to perform the 

recommended action 

Human 

operator 

AI assistant D (left empty) 

13 Operator's action The operator 

implements an 

action 

Example of context: 

The operator opens the transformer, which 

brings the flow on line L1 back to admissible 

level 

Human 

operator 

Environment HA (left empty) 
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5 Information exchanged 

Information 

exchanged 

(ID)  

Name of information Description of information exchanged 

HA 
Action implemented by a 

human operator 
Action (e.g., topology) implemented by human operator 

AIAL AI assistant alert 

AI assistant alert for an overload occurring on one or 

several grid elements. AI assistant alert for reached time 

limit of a given action 

AIR AI assistant recommendations List of remedial action recommended by the AI assistant 

D 
The decision from a human 

operator 
Human operator’s choice 

E Environment information 

Information on the environment, e.g., outages. 

In case an adversarial agent is used to model 

unplanned events, this information would be 

replaced by an “adversarial attack”. 

NINF New information 
Information related to the environment context that is not 

known by the AI assistant 

 

6 Requirements 

Requirements  

Categories 

ID 

Category name for 

requirements 

Category description 

Ro Robustness  

It encompasses both its technical robustness (the ability of 

a system to maintain its level of performance under a 

variety of circumstances) and its robustness from a social 

perspective (ensuring that the AI system duly takes into 

account the context and environment in which the system 

operates). This is crucial to ensure that, even with good 

intentions, no unintentional harm can occur.  

Source: EU-U.S. Terminology and Taxonomy for Artificial 

Intelligence. First Edition 

E Efficiency 

The ability of an AI system to achieve its goals or perform 

its tasks with optimal use of resources, including time, 

computational power, and data. 

I Interpretability 

Make the behavior and predictions of AI systems 

understandable to humans, i.e., the degree to which a 

human can understand the cause of a decision.  

Source: Molnar, Christoph. Interpretable machine learning. 

Lulu. com, 2020. 

FAIR 
Non-discrimination 

and fairness 

This means that AI systems are developed and used in a 

way that includes diverse actors and promotes equal 

access, gender equality, and cultural diversity while 

avoiding discriminatory impacts and unfair biases that are 

prohibited by Union or national law.  

Source: EU AI Act 
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HAO 
Human Agency and 

Oversight 

The design phase involves including mechanisms for 

human intervention and ensuring that people can easily 

understand and monitor AI systems. During deployment, it 

means continuous monitoring and evaluation to ensure 

that the systems act within their ethical boundaries. 

Requirement 

R-ID 

Requirement name Requirement description 

Ro-1 
Adaption to increased 

uncertainty 

The AI system should demonstrate the ability to sustain 

operational stability and decision performance in diverse 

and partially unpredictable scenarios, such as increased 

forecasting errors, missing data, unavailable control 

actions, and delayed measurements. 

Ro-2 
Network change 

responsiveness 

The AI system must be able to handle changes within the 

transmission grid infrastructure, such as introducing new 

grid elements and modifying the grid topology as the 

electrical grid evolves. 

Ro-3 
Cognitive load and 

stress 

The AI system shall not increase the complexity of the 

situation and the associated level of stress for human 

operators (due to additional misinformation). 

Ro-4 

Reproducibility of 

recommendations for 

post-mortem analysis 

All recommendations made by the AI system must be 

reproducible at a later point, given the same input or 

specific context/conditions. While the actions 

recommended by the system do not need to be identical in 

a strict mathematical sense - acknowledging the variability 

inherent in distributed computing environments - they 

should be closely aligned and functionally equivalent, 

ensuring reliable and predictable outcomes under similar 

conditions. Moreover, it should be possible to trace back 

which AI model or rules led to the decision(s) or 

recommendation(s) of the AI system, which is very 

relevant for audits from the Energy Regulator. 

Ro-5 

Increase technical 

robustness to missing 

or erroneous input 

data 

The training of the AI system should include scenarios with 

natural or adversarial perturbations in its input/state 

vector, which can originate from missing or erroneous 

values from the environment (or adversarial attacks from 

agents). 

Ro-6 

Robustness to attacks 

targeting model space 

and reward function 

Reward functions and models should be stored and 

operated in highly cyber-secure Information Technology 

systems. In the event of an attack, the previously trained 

model could be quickly restored. Model training should be 

done in a secure and controlled digital environment, and 

model retraining is possible. 

E-1 
Computational 

efficiency 

The AI system must be designed to ensure efficient 

training and inference capabilities on various computer 

hardware, from small-scale development setups with 

limited processing power to configurations involving 

multiple servers and GPUs. 
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I-1 

Adaptability to 

different levels of 

interaction and human 

operator preferences 

Each operator has its own preferences (e.g., one operator 

can be more risk averse than others): ideally, the AI 

assistant interacting with a given operator could provide 

decision support that fits the preferences of this operator 

but is not necessary of another, especially given the type 

of situation that can require more attention. Thus, the AI 

system shall be able to interact with the human operator 

according to his/her preferences and experience, such as 

a) fully manual, b) get notified every time an overload is 

detected, and c) only get notified when the AI assistant is 

not confident enough. 

FAIR-1 

Avoid creating or 

reinforcing unfair bias 

in the AI system 

The system must not unfairly favor specific producers or 

consumers of electrical energy. A level playing field in the 

electricity market, as well as fair competition, must be 

provisioned. Measures must be implemented to ensure 

these fairness constraints are observed. 

 

Note that:  

1) Occurring bias may very well originate from technical or 

physical limitations of electrical grid operations and hence 

may (in part or wholly) not be avoidable.  

2) Requiring the AI system to adhere to fairness standards 

that are not required from existing alternative techniques 

may put it at a disadvantage, especially if those originate 

from the source of the previous issue. 

FAIR-2 
Regular monitoring of 

fairness 

Using the physical equations of the power grid, it is 

possible to compare the decisions made by the AI system 

and the impact that other grid users would have in solving 

the technical problem. For instance, ex-post, it is possible 

to run an optimal power flow with the redispatch costs and 

compare its solution with the AI system. Having a least-

cost solution is the primary goal. Metrics such as Jain’s 

fairness index have been used to evaluate fairness in load 

shedding34 and fairness in renewables' curtailment35.   

HAO-1 

Additional training 

about AI for human 

operators  

The type of recommendation from this use case is already 

known by the human (i.e., the same as traditional tools in 

power system control rooms), but humans should be 

trained to understand the rationale behind the AI system 

(e.g., understand how reinforcement learning works) and 

its limitations. 

7 Common Terms and Definitions 

Common Terms and Definitions  

Term Definition 

TSO – Transmission 

System Operator 

A natural or legal person is responsible for operating, ensuring the 

maintenance of, and, if necessary, developing the transmission 

system in a given area and, where applicable, its interconnections 

with other systems and for ensuring the long-term ability of the 

system to meet reasonable demands for the transmission of 

electricity. Source: Directive 2009/72/EC and ENTSOE glossary 

 
34 F. Moret and P. Pinson, “Energy Collectives: A Community and Fairness Based Approach to Future Electricity Markets,” IEEE Trans. Power Syst., vol. 34, no. 5, 
pp. 3994–4004, Sep. 2019. 

35 M. Z. Liu Liu, A. T. Procopiou, K. Petrou, L. F. Ochoa, T. Langstaff, J. Harding, and J. Theunissen, “On the Fairness of PV Curtailment Schemes in Residential 
Distribution Networks,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4502–4512, 2020. 
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Common Terms and Definitions  

Term Definition 

EMS – Energy 

Management System 

Optimal control center solution to enable secure, efficient, and 

optimized operation of the electric power system. 

Contingency (“N-1” 

situation) 

Electric system’s state after the loss of one grid element, and 

possibly several grid elements, depending on the TSO’s policy  

Load (or power) flow 

calculation 

Calculations are used to determine the voltage, current, and real and 

reactive power at various points in a power system under steady-

state conditions. 
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UC1.RAILWAY: AUTOMATED RE-SCHEDULING IN RAILWAY OPERATIONS 

1 Description of the use case 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC01.Railway Railway network Automated re-scheduling in railway operations 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 12.04.2024 Roman Ließner, 

Irene Sturm, Adrian 

Egli 

Initial Version (import from UC1.Railway short) 

0.2 14.04.2024 Manuel Renold, 

Adrian Egli 

Checked alignment use cases/framework and 

more update 

0.3 16.04.2024 Ricardo Bessa Revision 

0.4 17.04.2024 Julia Usher Revision 

0.5 25.04.2024 Adrian Egli, Daniel 

Boos, Irene Sturm, 

Roman Ließner, 

Manuel Schneider 

Final Revision 

0.6 30.05.2024 Adrian Egli Revision: Action space 

1.0 08.07.2024 Ricardo Bessa Final version 

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope 

Traffic density on the European rail networks is constantly increasing. This 

increases the complexity of rail traffic management in operations: timetables are 

constructed to maximize utilization of the network’s capacity. At the same time, new 

construction or maintenance of railway infrastructure must be planned and carried 

out efficiently.  

In railway operations, the already densely planned schedules are disturbed by 

unexpected events, such as delays, infrastructure defects, or short -term 

maintenance. The execution of the planned timetable can only be achieved by acting 

on these events with frequent adaptation and re-scheduling of the planned train 

runs. Today, maintaining smoothly running operations requires that in operational 

centers, highly skilled personnel monitor the flow of traffic day and night, and quickly 

make re-scheduling decisions. 

Objective(s) 
The system's objective is to fully automate re-scheduling in railway operations to 

fulfill all offered services and minimize delays for the customer (passenger).  

Deployment 

model 
Cloud services and on-premises. 

1.4 Narrative of use case 

Narrative of Use Case 
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Short description 

In railway operations, traffic on the network is planned to fulfill the intended service that was 

contracted with the Railway Undertaking Operating Managers (RUOM), e.g., to execute train runs 

on the network so that the requested commercial stops are fulfi lled in a punctual manner. In 

operations, such a pre-planned schedule is executed.  

Unexpected events, such as infrastructure malfunctions or delays occur. In case of such a deviation, 

the automated system must re-calculate the schedule so that the requested services can be fulfilled 

with as little delay as possible. Adapting the schedule includes interventions, such as changing the 

speed curves of trains, changing the order of trains at the infrastructure element, changing the 

routes of trains, or changing the platform of a commercial stop in a station. A highly automated  AI-

based system is designed to manage and optimize railway schedules in real time, ensuring efficient 

rail network use while minimizing delays for passengers. The system is constantly monitored by a 

human operator who can adjust the system’s configuration and identify the  need for adaptation and 

re-training. 

Complete description 

Description of the re-scheduling task: Re-scheduling trains in railway operations means 

monitoring the movement of trains on a railway network and reacting to unexpected events, such as 

signal failures, track blockages, weather events that disrupt operations, or other significant delays, 

and also proactively to predicted deviations that affect planned operations in the future. Re-

scheduling measures include changing a train’s speed, path, or platform. In a densely utilized 

railway network, local re-scheduling decisions potentially affect the entire flow of traffic, and their 

effect can propagate far into the future. This means that the re-scheduling task is a very complex 

decision-making task that must integrate a lot of context information under time constraints  

 

System description and role of the human operator:  An AI-based re-scheduling system performs 

the re-scheduling task in a highly automated manner. This system observes the real -time state of 

all the trains and tracks in the control area of interest and automatically detects the need to 

intervene, decides on an intervention, and executes this intervention. Such an AI system for highly 

automated re-scheduling in operations is something new and unusual. The approach followed here 

can be understood as a first step towards introducing such a system. The highly automated AI 

system is treated as a new tool that is supervised and evaluated by an expert. The goal is to find 

the limits of the automated system as a starting point for improving and configuring it.  

In operations, the AI system re-schedules in a fully automated manner while the human supervisor 

monitors: 

• The system’s state in operations (e.g., number of trains, potential bottleneck in current 

and planned network usage) 

• KPIs for the actual situations (e.g., current delay) 

• Confidence/certainty of the AI system 

• Intensity of intervention (how much changes to the current operational plan did the AI 

perform, e.g., change platform) 

The supervisor uses this information to: 

• Decide at which point it would be advisable to switch off the AI system and take over 

control. 

• Decide to re-configure/adjust the system in operations. 

 

The overarching goal in this setup is to learn the existing solution's limits: in which situations does 

the AI system reach appropriate decisions? These insights should not only be generated from 

metrics extracted in tests and analyzed post-hoc but also in a realistic operational context with which 

the human operator is familiar. 

 

Operational scenario: For an operational scenario, there exists a definition of the intended service 

that was contracted with the network operator's customers (Railway Undertaking Operating 
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Managers (RUOMs)), e.g., a set of train runs with a sequence of commercial stops. For all 

commercial stops, there exists a time constraint, defining:  

• Latest arrival 

• Minimal dwell time 

• Earliest departure 

An initial schedule exists that is executable and fulfills the intended services, such as the arrival and 

departure times of trains at commercial stops, while taking into account operational requirements 

(safety systems, additional constraints). A schedule contains all the information that is needed to 

execute train runs.  

A schedule is acceptable if all hard constraints are fulfilled: 

• Commercial stops were performed in the right order before the end of the scenario.  

• Minimal dwell time for each stop has been respected. 

• Earliest departures for each stop have been respected. 

A schedule is punctual, i.e., fully fulfills the intended service; if the schedule is acceptable for all 

commercial stops, the constraint of “latest arrival” has been respected.  

 

The following steps are performed in the use case: 

1. Definition of System Parameters: Detailed parameters are set for the pre-planned 

schedule, including the prioritization of trains in case of disruptions, acceptable delay 

margins, and specific criteria for train prioritization (e.g., passenger load and destination 

importance). This step also includes the configuration of safety systems, network capacity 

limits, and any special operational requirements unique to certain routes or times.  

2. Schedule Execution: The initial operational plan is executed in operations. This includes 

the deployment of trains according to the pre-planned schedule, monitoring of train 

movements, adherence to the sequence of commercial stops, and ensuring compliance with 

operational requirements like safety systems. The state of the system is also displayed to 

the human supervisor in an appropriate manner.  

3. Triggering Re-scheduling: The re-scheduling process can be initiated by a variety of 

triggers, such as infrastructure changes (e.g., blocked tracks, malfunctioning switches), 

train delays, or equipment malfunctions. The system is designed to detect these deviations 

in real time and assess their impact on the overall schedule. The exact nature of this trigger 

or several different triggers needs to be defined and should also be configurable for usage.  

4. Display of Deviation and Triggering Re-calculation: Upon detecting a deviation, the 

system provides a detailed display of the issue, including its nature, location, and expected 

impact on the schedule. It then notifies the human supervisor and initiates the re-calculation 

process. 

5. Automated Schedule Re-calculation: The Traffic Management System (TMS) 

automatically recalculates the schedule from the point of deviation to the end of the 

operational scenario. The goal is to create an adapted schedule that is acceptable (meeting 

all hard constraints) and minimizes total delays, particularly focusing on the 'latest arrival' 

times at commercial stops. 

6. Execution of Adapted Schedule: The newly adapted schedule is then put into operation. 

The system continuously monitors for any further deviations and adjusts the schedule as 

needed to maintain operational efficiency and adherence to time constraints.  

Human Review and System Adjustment: A human supervisor reviews the performance of the 

system, analyzing how effectively it responded to deviations and the impact on service delivery. 

Based on this review, adjustments are made to the system's parameters, such as altering the 

prioritization criteria, adjusting acceptable delay thresholds, or refining the algorithm for schedule 

recalculations. This step ensures continuous learning and improvement of the system based on 

operational experiences and organizational goals. 

Stakeholders 

Railway network operator: Operator of the railway network in charge of maintaining the flow of 

traffic on the railway network to provide high quality-of-service to their direct customers (RUOMs) 

and the passengers.  
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Network supervisor: Human supervisor of the automated railway system (something like the former 

dispatcher who is not dispatching himself anymore but monitoring the system state),  

RUOM: Railway Undertaking Operation Manager offering passenger and freight traffic services.  

Neighboring areas of control/operational centers. 

Passenger: The primary end-user of the railway services whose travel experience and satisfaction 

are directly impacted by the efficiency and punctuality of train operations.  

Government and society: The quality of railway services is a concern of the government and 

society. 

Stakeholders’ assets, values  

Railway network operator: 

• Available capacity on the network: a low-quality re-scheduling functionality will consume 

more capacity on the network. 

• Reputation: low performance of the AI system can lead to a bad reputation in terms of 

operational stability, punctuality, etc., which might cause customers to not rely on and to 

use less the services offered. This also concerns network operators, RUOM, and 

passengers. 

• Legal and regulatory framework: Regulations with the discrimination-free treatment of 

RUOMs. 

• Unintended behavior of the AI system and actions by malicious actors can potentially 

compromise the safety of the train passengers, personnel on the train, and on and in 

proximity to the tracks, as well as infrastructure like tracks, power lines, tunnels, stations, 

etc. 

Human dispatcher:  

• Damage to the reputation, safety issues as well as a potential general perception of an 

opaque AI-system being in control of running trains can cause a decrease in the 

trustworthiness of the railway operator from a customer perspective, both for individual  

travelers and cargo transport. 

The usefulness and understandability of the AI-system output to the dispatcher may influence the 

trustworthiness of the AI-system from the perspective of the dispatcher. Low trustworthiness might 

render the use of the AI system irrelevant as the dispatcher will not trust the options generated by 

the system, and the assumed benefit will not materialize. 

System’s threats and vulnerabilities  

Accountability: who is responsible for delays and, in general, bad performance of the AI system.  

Security: A highly automated AI system introduces the risk of severe abnormal situations on the 

railway network. Although in railway systems, the immediate danger of train collision is addressed 

by separate systems that the AI system will not control, there is a risk of severe traffic congestion 

with significant economic effects on the network in case of a malfunctioning AI.  
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1.5 Key performance indicators (KPI) 

Name Description 
Reference to the mentioned use case 

objectives 

Acceptance score 

Tracks the frequency of human operator interventions in AI decisions. Target: 

Reduce to less than x% of cases. Calculation: (Number of human interventions / Total 

AI decision instances) x 100. 

Reflects the reliability and trust of the AI 

system.  

Punctuality 

Measures the percentage of trains arriving at their destinations on time. Target: 

Achieve a punctuality rate of x% or higher. Calculation: (Number of on-time arrivals 

/ Total number of arrivals) x 100. 

Linked to the objective of minimizing 

delays. 

Response time 

Assesses the speed at which the AI system responds to disruptions or changes. 

Target: Response within x minutes of disruption detection. Calculation: Average time 

taken from disruption detection to system response. 

Related to the objective of rapid re-

scheduling. 

Delay Reduction 

Efficiency 

Quantifies the effectiveness of the system in reducing delays. Target: Reduce overall 

delays by 30%. Calculation: (Total delay duration before AI implementation - Total 

delay duration after AI implementation) / Total delay duration before AI 

implementation. 

Linked to the objective of minimizing 

delays. 

Trust towards the AI-

System 

“(Dis)trust is defined here as a sentiment resulting from knowledge, beliefs, emotions, 

and other elements derived from lived or transmitted experience, which generates 

positive or negative expectations concerning the reactions of a system and the 

interaction with it (whether it is a question of another human being, an organization 

or a technology)” (Cahour & Forzy, 2009, p. 1261). 

The human operators' trust in the AI tool can be measured using the Scale for XAI 

(Hoffman et al., 2018) or similar. 

 

Linked to the human operator’s 

appropriate trust in the AI system as a 

necessary precondition of adequate use. 

Human motivation 

“Intrinsic motivation is defined as the doing of an activity for its inherent satisfaction 

rather than for some separable consequence. When intrinsically motivated, a person 

is moved to act for the fun or challenge entailed rather than because of external 

products, pressures, or rewards” (Ryan & Deci, 2000, p. 54). 

The human operators perceived internal work motivation can be measured by using 

the Job Diagnostic Survey (Hackman & Oldham, 1974) or similar. The questionnaire 

needs to be adapted to the AI context (e.g., problem detection with AI assistance).  

This is linked to the necessary 

motivation of the human operator to use 

the AI for complete a task and reach 

corresponding objectives. 
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Human 

control/autonomy over 

the process 

Autonomy is the degree to which the job provides substantial freedom, 

independence, and discretion to the employee in scheduling the work and in 

determining the procedures to be used in carrying it out” (Hackman & Oldham, 1975, 

p. 162). It consists of three interrelated aspects centered on freedom in decision-

making, work methods, and work scheduling (Morgeson & Humphrey, 2006). Parker 

and Grote (2022) view job autonomy interchangeably with job control. 

The human operator's perceived autonomy over the process can be measured by 

using the Work Design Questionnaire (Morgeson & Humphrey, 2006) or similar. The 

questionnaire needs to be adapted to the AI context (e.g., problem detection with AI -

assistance). 

Linked to the perceived control of the 

human operator as a necessary 

prerequisite for taking responsibility for 

the efficiency and effectiveness of one's 

own work. 

Human learning 

Human learning is a complex process that leads to lasting changes in humans, 

influencing their perceptions of the world and their interactions with it across physical, 

psychological, and social dimensions. It is fundamentally shaped by the ongoing, 

interactive relationship between the learner's characteristics and the learning 

content, all situated within the specific environmental context of time and place, as 

well as the continuity over time (Alexander et al., 2009).  

The human operators perceived learning opportunities working with the AI -based 

system can be measured by using the task-based workplace learning scale (Nikolova 

et al., 2014) or similar. The questionnaire needs to be adapted to the AI context.  

Linked to the objective of mutual co-

learning to assist the human operator in 

improving his/her performance. 

Decision support for 

the human operator 

Decision support tools should be aligned with the cognitive decision-making process 

that people use when making judgments and decisions in the real world and ensure 

that the human operator retains agency (Miller, 2023). AI decision support tools 

should, therefore, help people to remain actively involved in the decision-making 

process (e.g., by helping them critique their own ideas) (Miller, 2023).  

The decision support for the human operator can be measured based on the criteria 

for good decision support (Miller, 2023) or similar. The instrument needs to be further 

developed. 

Linked to the appropriateness of AI-

based support of the human operator’s 

decision-making process. 

Ability to anticipate 

“The ability to anticipate. Knowing what to expect, or being able to anticipate 

developments further into the future, such as potential disruptions, novel demands 

or constraints, new opportunities, or changing operating conditions” (Hollnagel, 2015, 

p. 4). 

The human operator’s ability to anticipate further into the future can be measured by 

calculating the ratio of (proactively) prevented deviations to actual deviations. In 

addition, the extent to which the anticipatory sensemaking process of the human 

operator is supported by an AI-based assistant can be measured by using the Rigor-

Linked to AI-based enabling of human 

operators to minimize delays for the 

customers. 
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Metric for Sensemaking (Zelik et al., 2010) or similar. The instrument needs to be 

further developed and adapted to the AI context.  

Situation awareness 

“Situation Awareness is the perception of the elements in the environment within a 

volume of time and space, the comprehension of their meaning, and the projection 

of their status in the near future” (Endsley, 1988, p. 12).  

The human operator’s situation awareness can be measured by using the Situation 

Awareness Global Assessment Technique (SAGAT) (Endsley, 1988) or similar.  

Linked to the AI-based assistance of the 

human operator for developing an 

appropriate situation awareness. 
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1.6 Features of use case 

Task(s) Planning, prediction, optimization, interactivity, and recommendation.  

Method(s) 
Reinforcement learning has been applied to this use case, but other AI approaches 

are possible. 

Platform Flatland digital environment. 

1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. Autonomous management and optimization of railway scheduling in real-time are high-

stakes tasks, and therefore, risk management specifically related to AI is fundamental.  

ISO/IEC 38507:2022, Information technology — Governance of IT — Governance implications of the 

use of artificial intelligence by organizations . Autonomous AI requires an analysis of governance 

implications and also a redefinition of the organization structure.  

ISO/IEC 24029-2:2023, Artificial intelligence (AI) — Assessment of the robustness of neural networks 

— Part 2: Methodology for using formal methods . Since artificial neural networks can be a component 

of the autonomous AI system, formal methods to assess the robustness properties of neural networks 

are fundamental to certify and monitor autonomous systems. 

In railway transport, there are different levels of automation (Grade of Automation, GoA) defined in 

the IEC 62267 Standard ("Railway applications - Automated urban guided transport (AUGT) - Safety 

requirements”). This standard covers high-level safety requirements applicable to automated urban 

guided transport systems, with driverless or unattended self-propelled trains, operating on an 

exclusive guideway. 

DIN EN 50126, Railway Applications – The Specification and Demonstration of Reliability, 

Availability, Maintainability and Safety (RAMS) . It considers the generic aspects of the RAMS life 

cycle and provides a description of a Safety Management Process.  It provides guidelines for defining 

requirements, conducting analyses, and demonstrating the reliability, availability, maintainability, 

and safety aspects throughout the lifecycle of railway applications.  

DIN EN 50128, Railway applications – Communication, signaling and processing systems. Outlines 

the procedural and technical criteria for crafting software intended for programmable electronic 

systems in railway control and protection applications. 

Standardization requirements 

Opportunities for standardization and deriving recommendations for critical operations management 

and support, especially regarding co-decision-making and human-computer interaction, as well as 

safety requirements. See also UC2.Railway. 

1.8 Societal concerns 

Societal concerns 

Description 

Privacy and data protection: The use of AI in railway scheduling involves the collection and 

analysis of large volumes of data, including potentially sensitive information. There is a concern 

about how this data is stored, processed, and protected, especially in compliance with data protection 

regulations like GDPR. Ensuring the privacy and security of passenger and employee data is 

paramount. 

Transparency and accountability: There is a societal demand for transparency in how AI systems 

make decisions, especially in critical infrastructure like railway systems. The public might be 

https://github.com/flatland-association/flatland-rl
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concerned about the lack of understanding of AI decision-making processes and the accountability 

mechanisms in place in case of failures or errors. 

Employment and skill shift: The automation of train scheduling might lead to concerns about job 

displacement and the need for reskilling of railway staff. While AI can optimize operations, it also 

changes the nature of work, requiring a shift in skills for human operators who now need to oversee 

and interact with advanced AI systems. 

Public trust and acceptance: For the successful implementation of AI in public transportation, 

gaining and maintaining public trust is crucial. There may be apprehensions and resistance from the 

public regarding the shift to AI-driven systems, especially among those accustomed to traditional 

methods. 

Safety and security: The use of AI systems for critical operational scenarios raises concerns 

regarding the continued safety and security of these systems. Understanding failure modes, 

developing robust models, and ensuring resilience to adversarial attacks are among the many  topics 

to be tackled. 

Inequality: Such systems might introduce inequality in service quality for different geographic 

regions or categories of passengers due to the opacity of the system, bias, and self -learning aspects. 

Sustainable Development Goals (SGD) to be achieved 

SDG9. Decent work and economic growth / SDG9. Industry, innovation and infrastructure / SDG11. 

Sustainable cities and communities / SDG13. Climate action 

2 Environment characteristics 

Characteristics 

Observation 

space 

Partially observable with limitations due to the unpredictable duration of delays and 

malfunctions. 

Data update is near real-time (rather seconds than hours). 

Domain: defined on a continuous space. 

Size: Depending on the type of observation considered local or global, the total size 

can depend, but it will generally be very large. 

Noise: The observation can be noisy due to the communication system and the 

various signaling devices (signal box). 

(In addition to more than 10,000 trains (per day), there are over 32,000 signals and 

over 14,000 switches in the Swiss rail network. All of this information must be 

considered and observed; thus, the global observation is very large.)  

Action space 

Mixed action space: actions like which route to take on a switch are discrete, as well 

as decisions like whether a train should accelerate or decelerate. However, 

dependent on the algorithmic approach, the rate of acceleration, deceleration, 

velocity to move forward, and similar can be modeled both discrete and continuous. 

Size: Depends on the algorithmic approach. While the action space grows linearly 

with the number of trains for the algorithmic part, it grows exponentially if there is a 

central actor controlling all the trains. The action space of the human dispatcher is,  

in any case, exponentially growing with the number of trains. Furthermore, the 

dimensionality of the action space depends on infrastructure and timetable elements 

like switches, signals, and scheduled stops. Hereby, the impact on the 

dimensionality of the action space depends not only on the actor's nature in the 

algorithmic part but also on the type of task, i.e., if the task is tackled episodically or 

sequentially on the algorithmic side. For the human dispatcher, the task is generally 

considered to be sequential since an action is usually dependent on previous actions 

taken. 

Time horizon: An action typically takes from a few minutes to a couple of hours.  

The action space of the flatland environment is 5 (go left, go forward, go right, stop, 

none). However, each train run (agent) must perform one of these basic actions at 
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each decision point (time step). This means that the total number of actions to be 

selected is very large and stays in linear relation to the number of agents - i.e., in a 

problem-solving scenario with n agents and m time steps, the actions should be 

chosen in such a way that the combination of selected actions leads to the desired 

outcome or optimal solution. Each agent has a set of actions to choose from, from 

which they must select one at each time step. Therefore, the solution involves n x 

m x a possible action. (Up to 800 trains run simultaneously on the Swiss rail network. 

In many cases, they interact directly or indirectly with each other.).  

Type of task 

The nature of the task depends on the algorithmic approach. While AI models can 

determine which action to take fully based on the current state without including 

information about past actions and would therefore be considered episodic, other 

approaches can, to a large degree, approach problem-solving as a sequential task, 

for example, if planning is involved. The human dispatcher usually approaches the 

task sequentially. 

Sources of 

uncertainty 

Stochastic, with the following sources of uncertainty: 

1) Weather conditions can impact, e.g., the friction of wheels on rails, which leads 

to different acceleration and deceleration behavior. 

2) The travel demand influences both the total load of a train and the delay to 

board other passengers. 

3) Disruptions: Train level – locomotives or another rolling stock issue that may 

arise and result in a delay; Infrastructure level – signal malfunctions or 

construction sites. 

4) Sensors and communication level – a failure may introduce noise and 

uncertainty in observing the environment. 

Environment 

model 

availability 

A specific model of the environment is not available. Although a good 

approximation of it can be achieved as the basic laws of physics are defined and 

clear. However, a model of the environment will be simplified in general and 

subject to uncertainty (see above). 

Human-AI 

interaction 

Co-learning between the human and AI: The interaction between humans and AI is 

done just after fully automated rescheduling when the super users analyze the 

outcome of the operations. (Learning from post-perspective analytics). 

3 Technical details 

3.1 Actors 

Actor Name 

 

Actor Description  

Dispatcher 

The dispatcher is a human responsible for monitoring and analyzing 

railway traffic. The main role is to ensure the safe and efficient movement 

of trains by controlling the flow of traffic and making decisions based on 

real-time information. The dispatcher determines the order of trains and 

may deviate from planned routes when necessary to accommodate 

unexpected situations or optimize the overall operation. The decisions play 

a crucial role in maintaining the smooth functioning of the railway system.  

Traffic control system 

The traffic control system collects information such as traffic signals, train 

positions, and current train speeds and also provides a human-machine 

interface for controlling ongoing traffic. The system's goal is to manage 

the flow of traffic efficiently, centrally, and safely. This necessitates the 

comprehensive collection of available information to effectively support the 

decision-making process, which is primarily performed by human 

dispatchers. Consequently, the traffic control system is vital and should be 
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implemented with a human-centered approach unless a fully automated 

solution is available. 

Train run (Driver) 

A train run refers to the operation of a train on a specific route or journey 

from one station to another. It encompasses the entire process of a train 

traveling along its designated path, including departure from the 

originating station, intermediate stops (if any), and arrival at the 

destination station. The current position and speed of the train are 

communicated to the traffic control system. 
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4 Step-by-step analysis of use case 

4.1 Overview of scenarios 

Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

1 

Re-Scheduling at 

the occurrence of 

infrastructure 

malfunction 

The automated railway 

management system 

faces a challenge when 

a sudden infrastructure 

malfunction occurs 

(trigger event). This 

requires an immediate 

and strategic response 

to ensure continued 

service delivery and 

minimize disruptions. 

A change in the infrastructure, e.g., a 

track becomes unexpectedly blocked 

Intended service:  a set of train 

runs with Start- and end locations, 

a sequence of commercial stops, 

both with time information (Latest 

arrival, minimal dwell time, earliest 

departure).  

An initial (microscopic) operational 

plan that is executable and fulfills 

the intended services, such as the 

arrival and departure times of trains 

at commercial stops. 

The system has 

produced a new 

operation plan that 

is executable in the 

simulation and leads 

to an “acceptable” 

state at the end of 

the scenario. 

2 

Emergency 

response to 

weather challenges 

 

This scenario deals with 

sudden weather 

challenges, such as 

extreme weather 

conditions, impacting 

railway operations. 

A weather challenge arises, such as a 

severe storm, heavy snowfall, or 

flooding, affecting parts of the railway 

network. 

A standard operational plan is in 

place, but it does not account for a 

general degradation of the state of 

operations, such as a general 

reduction of speed in a larger part 

of the network or the entire network. 

The system quickly 

evaluates the 

impact of the 

environmental 

challenge on the 

network. It re-

calculates a plan 

that adapts to the 

new situation. 

3 
Closure of a large 

station 

This scenario addresses 

the challenge of 

adjusting the schedule in 

case of a closure of a 

whole station. 

Closure of a station. 

A standard operational plan is in 

place that foresees a number of 

trains performing commercial stops 

in the affected station. 

Re-calculated plan   
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4.2 Steps of the training scenario 

Step 

no. 

Event Name of 

process/ 

activity 

Description of process/ activity Service Information producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

1 Start 

Definition of 

system 

parameters 

Detailed parameters are set for the pre-planned schedule, 

including the prioritization of trains in case of disruptions, 

acceptable delay margins, and specific criteria for train 

prioritization (e.g., passenger load and destination 

importance). This step also includes the configuration of 

safety systems, network capacity limits, and any special 

operational requirements unique to certain routes or times.  

Administrator 

 

Network 

Operator 
SYSPAR 

2 

System 

params 

defined 

Schedule 

Execution 

The initial operational plan is executed in operations. This 

includes the deployment of trains according to the pre-

planned schedule, monitoring of train movements, 

adherence to the sequence of commercial stops, and 

ensuring compliance with operational requirements like 

safety systems. The state of the system is also displayed to 

the human supervisor in an appropriate manner. 

Dispatcher TMS  EXECPLAN 

3  
Triggering  

Re-scheduling 

The re-scheduling process can be initiated by a variety of 

triggers defined by the scenarios listed in 4.1. Examples of 

such triggers are infrastructure changes (scenario 1), heavy 

weather events (scenario 2) or station closures (scenario 3). 

The system is designed to detect these deviations in real 

time and assess their impact on the overall schedule. The 

exact nature of this trigger or several different triggers 

needs to be defined and should also be configurable for 

usage. 
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4  

Display of 

Deviation and 

Triggering Re-

calculation 

Upon detecting a deviation, the system provides a detailed 

display of the issue, including its nature, location, and 

expected impact on the schedule. It then notifies the human 

supervisor and initiates the re-calculation process. 

TMS Dispatcher STATE 

5  

Automated 

Schedule Re-

calculation 

The Traffic Management System (TMS) automatically 

recalculates the schedule from the point of deviation to the 

end of the operational scenario. The goal is to create an 

adapted schedule that is acceptable (meeting all hard 

constraints) and minimizes total delays, particularly focusing 

on the 'latest arrival' times at commercial stops. 

TMS 
Dispatcher, 

Simulation 
EXECPLAN 

6  

Execution of 

Adapted 

Schedule 

The newly adapted schedule is then put into operation. The 

system continuously monitors for any further deviations and 

adjusts the schedule as needed to maintain operational 

efficiency and adherence to time constraints. 

   

7  

Human Review 

and System 

Adjustment: 

A human supervisor reviews the performance of the system, 

analyzing how effectively it responded to deviations and the 

impact on service delivery. Based on this review, 

adjustments are made to the system's parameters, such as 

altering the prioritization criteria, adjusting acceptable delay 

thresholds, or refining the algorithm for schedule 

recalculations. This step ensures continuous learning and 

improvement of the system based on operational 

experiences and organizational goals. 

TMS Dispatcher STATE 
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5 Information exchanged 

Information exchanged 

Information 

exchanged (ID)  

Name of information Description of information exchanged 

   

SYSPAR System Parameters A series of parameters is necessary to 

initialize the environment and provide all 

operative information to the agent(s).  

EXECPLAN Operational plan  The planned schedule is to be executed, 

including information such as commercial stop 

sequence and operational requirements. 

STATE State of the system Detailed information on the current state of the 

system. Particular focus is given to any 

information about deviations from the 

expected system state.   

 

 

6 Requirements 

Requirements  

Categories 

ID 

Category name 

for requirements 

Category description 

Ro Robustness 

It encompasses both its technical robustness (the ability of a 

system to maintain its level of performance under a variety of 

circumstances) as well as its robustness from a social 

perspective (ensuring that the AI system duly takes into 

account the context and environment in which the system 

operates). This is crucial to ensure that, even with good 

intentions, no unintentional harm can occur.  

Source: EU-U.S. Terminology and Taxonomy for Artificial 

Intelligence. First Edition 

E Efficiency 

The ability of an AI system to achieve its goals or perform its 

tasks with optimal use of resources, including time, 

computational power, and data. 

I Interpretability 

Make the behavior and predictions of AI systems 

understandable to humans, i.e., the degree to which a human 

can understand the cause of a decision. Source: Molnar, 

Christoph. Interpretable machine learning. Lulu. com, 2020.  

Re 
Regulatory and 

legal 

The AI system's capacity to meet its objectives while complying 

with relevant laws, regulations, and ethical standards. 

Fa Fairness 

Ensure the recommendations and predictions of the AI system 

are in line with the principles of fairness (i.e., fair distribution 

of the benefits and strain/harm) 

O Other 
Other non-function requirements related to environmental 

concerns and maintenance 

Requirement 

R-ID 

 

Requirement 

name 

Requirement description 

Ro-1 

Reasonable 

recommendations 

in new situations 

(not seen during 

model training) 

Systems provides reasonable solutions for situations not seen 

during training. 
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Ro-2 

Good 

performance in 

operating 

scenarios with 

high variability 

The system performs well in situations with many fast-changing 

elements 

Ro-3 
Retrospective 

quality control 
The quality of provided options can be assessed in retrospect 

E-1 

Capacity to 

handle operating 

scenarios with 

high complexity 

The system derives options fast and with high quality in 

complex situations with many trains, switches, and other 

elements involved. 

E-2 Scalability 

Concerns the system's ability to handle growth, such as 

increased train traffic or network expansion, without 

performance degradation. This ensures the system remains 

effective as the scale of railway operations increases. 

E-3 

Generalization to 

different 

scenarios 

The system’s ability to handle previously unseen scenarios and 

generalize to areas of observation and action space not visited 

during training (e.g., different speed profiles, rails configuration 

etc.) 

Re-1 

Compliance with 

legal standards 

and regulations 

Adherence to data protection laws, safety regulations, 

cybersecurity, and ethical guidelines governing AI systems in 

public transportation and the EU AI Act. 

I-1 
Interpretability of 

suggestions 

The process through which the AI system learns and operates, 

including how it generates suggestions, is transparent and 

understandable to the human dispatcher. Further, the decision-

making that leads to the suggestion, as well as its limitations, 

are explained to the human dispatcher. 

Fa-1 
Distribution of 

Delays 

The system should not unfairly favor specific regions, 

connections, or groups of individuals. This means that when 

system disruptions cannot be avoided, they should be 

distributed fairly. Measures should be put in place to ensure 

that these constraints are observed. 

Re-2 
RUOM 

Favouritism  

The system should not unfairly favor specific RUOMs. Re-

scheduling in railway operations must impact the RUOMs fairly. 

Measures should be put in place to ensure that these 

constraints are observed. 

O-1 Maintainability 

Involves the ease with which the system can be maintained and 

updated. This includes the ability to diagnose and fix issues, 

update software, and adapt to changing operational 

requirements. 

O-2 
Environmental 

Sustainability 

Addresses the system's impact on the environment. This 

includes considerations such as energy efficiency of the AI 

algorithms and the broader ecological footprint of the system's 

implementation and operation. 

 

7 Common Terms and Definitions 

Common Terms and Definitions  

Term Definition 

Railway Undertaking 

Operating Managers 

(RUOMs) 

Company or organization that operates trains or provides rail transport 

services. 

Traffic Management 

System (TMS) 

It provides permanent control across the network, automatically sets routes for 

trains logs train movements, and detects and solves potential conflicts.  
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Co-learning 

Co-learning indicates that human or AI in a team has the ability to interact, 

learn from/with, and grow with their collaborator. Co-learning aims to support 

two dynamic, growing entities to build mutual understanding, facilitate mutual 

benefit, and enable mutual growth over time. Source: Huang, Y. C., Cheng, Y. 

T., Chen, L. L., Hsu, J. Y. J. (2019). Human-AI Co-learning for data-driven AI. 

arXiv preprint arXiv:1910.12544. 

Trains re-scheduling 

Monitoring the movement of trains on a railway network and reacting to 

unexpected events, such as signal failures, track blockages, or weather events 

that disrupt operations, to other significant delays, and proactively to predicted 

deviations that affect planned operations. Re-scheduling measures include 

changing a train’s speed, path, or platform for stopping.  

 

UC2.RAILWAY: AI-ASSISTED HUMAN RE-SCHEDULING IN RAILWAY 

OPERATIONS 

1 Description of the use case 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC2.Railway Railway network AI-assisted human re-scheduling in railway operations 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 04.03.2024 Adrian Egli, Daniel Boos, Irene Sturm, 

Roman Ließner, Manuel Schneider, Julia 

Usher, Manuel Renold, Toni Wäfler, 

Samira Hamouche 

Initial Version (import 

from UC2.Railway 

short) 

0.2 15.04.2024 Anton Fuxjäger, Adrian Egli, Manuel 

Schneider, Julia Usher, Toni Wäfler, 

Roman Ließner, Cyrill Ziegler, Manuel 

Renold, Daniel Boos 

Updated 

 

 

0.3 16.04.2024 Ricardo Bessa Revision 

0.4 25.04.2024 Adrian Egli, 

Daniel Boos, 

Irene Sturm, 

Roman 

Ließner, 

Manuel 

Schneider 

Final Revision 

0.5 30.05.2024 Adrian Egli Revision: Action space  

1.0 08.07.2024 Ricardo Bessa Final version 

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope 
Traffic density on the European rail networks is constantly increasing. This 

increases the complexity of rail traffic management in operations: timetables are 
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constructed to utilize the network’s capacity maximally. At the same time, new 

construction or maintenance of railway infrastructure must be planned and carried 

out efficiently. In railway operations, the already densely planned schedules are 

disturbed by unexpected events, such as delays, infrastructure defects, or short-

term maintenance. The execution of the planned timetable can only be achieved 

by acting on these events by frequently adapting and re-scheduling the planned 

train runs. Already today, maintaining smoothly running operations requires that in 

operational centers, highly skilled personnel monitor the flow of traffic day and 

night and quickly make decisions about re-scheduling of trains. 

Objective(s) 

Aims to use AI-based methods to assist the human dispatcher in railway operations 

in re-scheduling train runs to fulfill all offered services and minimize delays for the 

customer (passenger). 

Deployment 

model 
Cloud services and on-premises. 
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1.4 Narrative of use case 

Narrative of Use Case 

Short description 

In railway operations, traffic on the network is planned to fulfill the intended service contracted 

with the Railway Undertaking Operating Managers (RUOM). In railway traffic operations, a pre -

planned schedule is executed. Unexpected events, such as infrastructure malfunctions or delays, 

occur. In this use case, a disruption or deviation occurs, and a dispatcher needs to become aware 

of the situation, analyze it, and decide to fulfill the requested services as close as possible to the 

pre-planned schedule. In our case, the dispatcher should be supported by an AI-assisted system 

to choose some actions, e.g., changing the speed, order, or trains routes. The support system 

takes the state of all trains in the dispatcher’s control area as input and suggests options, i.e., sets 

of actions, to the dispatcher. 

Complete description 

Train dispatching is responsible for managing the movement of trains across a complex rail 

network. Human dispatchers rely on a computerized dispatching system to plan and monitor train 

movements. However, unexpected disruptions, such as signal failures, track blockages, or weather 

events, can cause significant delays and disruptions to the train schedule. In  the event of a 

disruption, dispatchers need to quickly make decisions to reschedule trains and minimize the 

impact on passengers and freight. This can be complex and time-consuming, especially 

considering the intricate network of tracks, train priorities, and passenger demand.  

In this use case, an AI-assistant system supports the human dispatcher. This system gets the real -

time state of all the trains and tracks in the dispatcher’s control area and derives possible 

dispatching options in case of deviations from the pre-planned schedule due to disruptions or 

delays. The options are presented in near real-time to the dispatcher and consist of a set of actions 

the dispatcher can perform to bring the trains back or close to their pre-planned schedules. 

The following steps are performed in the use case: 

1. Definition of system parameters: Detailed parameters are set for the pre-planned 

schedule, including the prioritization of trains in case of disruptions, acceptable delay 

margins, and specific criteria for train prioritization (e.g., passenger load and destination 

importance). This step also includes the configuration of safety systems, network capacity 

limits, and any special operational requirements unique to certain routes or times.  

2. Set up/configuration of human-AI teaming: The human defines the boundary 

requirements, including the flexible allocation of decision-making authority between 

humans and machines.  

3. Schedule execution: The initial operational plan is put into action. This includes the 

deployment of trains according to the pre-planned schedule, monitoring of train 

movements, adherence to the sequence of commercial stops, and ensuring compliance 

with operational requirements like safety systems and traffic density management. 

4. Monitoring: At any time during operations, the human dispatcher can monitor the flow of 

traffic in the area of control. Visual displays of the traffic running through the network 

exist, and metrics are available. Information about the current intended plan is available.  

5. Detection of deviation: At any time in operations, the human-AI team detects an 

emerging deviation of the actual state of the system from the planned state. The re -

scheduling process can be initiated by various triggers such as infrastructure changes 

(e.g., blocked tracks, malfunctioning switches), train delays, equipment malfunctions, or 

potential future issues. The system is designed to detect these deviations in real  time and 

assess their impact on the overall schedule. The system also predicts issues that might 

become relevant in the future. 

6. Action (re-scheduling): Upon detecting a current or future deviation by the system or 

human, the system provides a detailed display of the issue, e.g., including its nature, 

location, and expected impact on the schedule. Either the human or the system starts with 

a suggestion, leading to two further paths of actions: 
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a. The system provides suggestions. The human provides feedback (e.g., context 

unknown to the system). AI adapts the solution based on the feedback. The 

human agent can choose to select one of the suggestions by the AI systems, 

initiate a new solution search, or choose their own course of action. 

b. The human provides a suggestion. The AI system provides quantified feedback 

to the human suggestions, including own and adapted suggestions. Humans 

select one of the proposed solutions and initiate action. Alternatively, humans 

formulate a hypothesis, and the AI system provides evidence for and against 

these hypotheses. 

7. Execute solution: The newly adapted schedule is implemented. The system continuously 

monitors for any further deviations and adjusts the schedule as needed to maintain 

operational efficiency and adherence to time constraints.  

8. Human review and system adjustment: A human supervisor reviews the system's 

performance, analyzing how effectively it responded to deviations and the impact on 

service delivery. Based on this review, adjustments are made to the system's parameters, 

such as altering the prioritization criteria, adjusting acceptable delay thresholds, or 

refining the algorithm for schedule recalculations. This step ensures continuous learning 

and improvement of the system based on operational experiences and organizational 

goals. 

9. Co-learning: AI agent learning loop using observations of the human decision-making 

process. The human learning process (e.g., to detect emerging deviations or to develop 

solutions) is explicitly supported by human-AI interaction. 

Stakeholders 

Railway network operator: Operator of the railway network in charge of maintaining traffic flow 

on the railway network to provide high quality-of-service to their direct customers (RUOMs) and 

the passengers.  

Network supervisor: Human supervisor of the automated railway system (something like the 

former dispatcher who is not dispatching himself anymore but monitoring the system state),  

RUOM: Railway Undertaking Operation Manager offering passenger and freight traffic services.  

Neighboring areas of control/operational centers. 

Passenger: The primary end-user of the railway services whose travel experience and satisfaction 

are directly impacted by the efficiency and punctuality of train operations.  

Government and society: The quality of railway services is a concern of the government and 

society. 

Stakeholders’ assets, values  

Railway network operator: 

• Available capacity on the network: a low-quality re-scheduling functionality will consume 

more capacity on the network. 

• Reputation: low performance of the AI system can lead to a bad reputation in terms of 

operational stability, punctuality, etc., which might cause customers to not rely on and to 

use less the services offered. This also concerns network operators, RUOM, and 

passengers. 

• Legal and regulatory framework: Regulations with discrimination-free treatment of 

RUOMs. 

• Unintended behavior of the AI system and actions by malicious actors can potentially 

compromise the safety of the train passengers, personnel on the train, and on and in 

proximity to the tracks, as well as infrastructure like tracks, power lines, tunnels, stations, 

etc. 

Human dispatcher:  

• Damage to the reputation as well as a potential general perception of an opaque AI system 

being in control of running trains can cause a decrease in the trustworthiness of the railway 

operator from a customer perspective, both for individual travelers and cargo transport.  
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The usefulness and understandability of the AI-system output to the dispatcher may influence the 

trustworthiness of the AI-system from the perspective of the dispatcher. Low trustworthiness might 

render the use of the AI system irrelevant as the dispatcher will not trust the options generated by 

the system, and the assumed benefit will not materialize. 

System’s threats and vulnerabilities  

Trust from human operators: The operational performance of the AI assistant will not be close 

to 100% of problems solved, which may hinder the confidence and trust of the human operator in 

the AI recommendations. This could introduce a negative cognitive bias in humans.  

Progressive deviation of environment behavior: Not only can the system conditions evolve but 

also the operational rules, the human operators’ behavior, or other applicable regulation. This can 

progressively alter the efficiency of the AI assistant if it is not regularly “updated”. The issue can 

be exacerbated by the fact that such changes happen very incrementally in time and are quite 

hard to detect at the early beginning, where only a few changes should be adopted.  

A mismatch between AI training and deployment:  Where significant differences exist between 

the digital environment used to train the AI model or the lack of information in historical data used 

to train the AI model can cause issues under real operating conditions. This could lead to low 

robustness and poor performance during execution, e.g., recommendations based on inaccurate 

assumptions about observability and controllability.  

Security: The AI system introduces the risk of malicious actors disrupting operations either 

through the disabling or disruption of the AI system or by influencing system to produce output 

that causes delays, etc 
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1.5 Key performance indicators (KPI) 

Name Description 
Reference to the mentioned use 

case objectives 

Assistant relevance 

Situation awareness of the human operator using the system It is based on an evaluation by 

the human operator of the relevance of action recommendations provided by the AI assistant 

and measured by the number of recommendations from the AI assistant effectively used by 

the human operator. 

Linked to the capacity of the AI 

system to support the dispatcher 

in choosing some actions. 

Human Information 

Processing 

The volume of information that the human takes into account when making decisions with AI 

support (as compared to making decisions with no AI support).  

Linked to the cognitive load of 

human dispatchers. 

Punctuality An aggregated measure of the delay in a scenario (defaults to be defined).  
Linked to the objective of 

minimizing delays. 

Response time The time needed to produce a new schedule in case of a disturbance event. 
Related to the objective of rapid 

re-scheduling. 

Comprehensibility  

It is defined as the ability to understand a decision logic within a model and, therefore, the 

ability to use this knowledge in practice (Futia and Vetrò, 2020).  

Futia, G. and Vetrò, A. (2020). On the Integration of Knowledge Graphs into Deep Learning 

Models for a More Comprehensible AI. Information, 11 (2), 122-132. 

Herm, L. V., Wanner, J., Seubert, F., & Janiesch, C. (2021). I Don't Get IT, but IT seems 

Valid! The Connection between Explainability and Comprehensibility in (X) AI Research. In 

ECIS. 

Linked to interpretation of what 

has been learned and decision 

logic. 

Acceptance 
Acceptance of the system by a human user (e.g., Using the TAM model (technology 

acceptance model). 

Reflects the reliability and trust 

of the AI system. 

Trust towards the AI-

Tool 

“(Dis)trust is defined here as a sentiment resulting from knowledge, beliefs, emotions and 

other elements derived from lived or transmitted experience, which generates positive or 

negative expectations concerning the reactions of a system and the interaction with it 

(whether it is a question of another human being, an organization or a technology)”  (Cahour 

& Forzy, 2009, p. 1261). 

The human operators' trust towards the AI tool can be measured using the Scale for XAI 

(Hoffman et al., 2018) or similar. 

Linked to the human operator’s 

appropriate trust in the AI 

system as a necessary 

precondition of adequate use. 

Human motivation 

“Intrinsic motivation is defined as the doing of an activity for its inherent satisfaction rather 

than for some separable consequence. When intrinsically motivated, a person is moved to 

act for the fun or challenge entailed rather than because of external products, pressures, or 

rewards” (Ryan & Deci, 2000, p. 54). 

This is linked to the necessary 

motivation of the human 

operator to use the AI for 

complete a task and reach 

corresponding objectives. 
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The human operators perceived internal work motivation can be measured by using the Job 

Diagnostic Survey (Hackman & Oldham, 1974) or similar. The questionnaire needs to be 

adapted to the AI context (e.g., problem detection with AI-assistance). 

Human 

control/autonomy over 

the process 

Autonomy is the degree to which the job provides substantial freedom, independence, and 

discretion to the employee in scheduling the work and in determining the procedures to be 

used in carrying it out” (Hackman & Oldham, 1975, p. 162). It consists of three interrelated 

aspects centered on freedom in decision making, work methods and work scheduling 

(Morgeson & Humphrey, 2006). Parker and Grote (2022) view job autonomy interchangeably 

with job control. 

The human operators perceived autonomy over the process can be measured by using the 

Work Design Questionnaire (Morgeson & Humphrey, 2006) or similar. The questionnaire 

needs to be adapted to the AI context (e.g. problem detection with AI -assistance). 

Linked to the perceived control 

of the human operator as a 

necessary prerequisite for 

taking responsibility for the 

efficiency and effectiveness of 

one's own work. 

Human learning 

Human learning is a complex process that leads to lasting changes in humans, influencing 

their perceptions of the world and their interactions with it across physical, psychological, 

and social dimensions. It is fundamentally shaped by the ongoing, interactive relationship 

between the learner's characteristics and the learning content, all situated within the specific 

environmental context of time and place, as well as the continuity over time (Alexander et 

al., 2009). 

The human operators perceived learning opportunities working with the AI -based system can 

be measured by using the task-based workplace learning scale (Nikolova et al., 2014) or 

similar. The questionnaire needs to be adapted to the AI context.  

Linked to the objective of mutual 

co-learning to assist human 

operator to improve his/her 

performance. 

Decision support for 

the human operator 

Decision support tools should be aligned with the cognitive decision-making process that 

people use when making judgements and decisions in the real world and ensure that the 

human operator retains agency (Miller, 2023). AI decision support tools should therefore help 

people to remain actively involved in the decision-making process (e.g. by helping them 

critique their own ideas) (Miller, 2023). 

The decision support for the human operator can be measured based on the criteria for 

good decision support (Miller, 2023) or similar. The instrument needs to be further 

developed. 

Linked to appropriateness of AI-

based support of the human 

operator’s decision-making 

process. 

Ability to anticipate 

“The ability to anticipate. Knowing what to expect, or being able to anticipate developments 

further into the future, such as potential disruptions, novel demands or constraints, new 

opportunities, or changing operating conditions” (Hollnagel, 2015, p. 4). 

The human operator’s ability to anticipate further into the future can be measured by 

calculating the ratio of (proactively) prevented deviations to actual deviations. In addition, 

the extent to which the anticipatory sensemaking process of the human operator is supported 

Linked to AI-based enabling of 

human operator to minimize 

delays for the customers. 
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by an AI-based assistant can be measured by using the Rigor-Metric for Sensemaking (Zelik 

et al., 2010) or similar. The instrument needs to be further developed and adapted to the AI 

context.  

Situation awareness 

“Situation Awareness is the perception of the elements in the environment within a volume 

of time and space, the comprehension of their meaning, and the projection of their status in 

the near future” (Endsley, 1988, p. 12). 

The human operator’s situation awareness can be measured by using the Situation 

Awareness Global Assessment Technique (SAGAT) (Endsley, 1988) or similar.  

Linked to the AI-based 

assistance of the human 

operator for developing an 

appropriate situation 

awareness. 
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1.6 Features of use case 

Task(s) Planning, prediction, optimization, interactivity, recommendation 

Method(s) 
Reinforcement learning has been applied to this use case, but other AI approaches 

are possible. 

Platform Flatland digital environment. 

1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. Autonomous management and optimization of railway scheduling in real-time are high-

stakes tasks, and therefore, risk management specifically related to AI is fundamental.  

ISO/IEC 38507:2022, Information technology — Governance of IT — Governance implications of the 

use of artificial intelligence by organizations . Autonomous AI requires an analysis of governance 

implications and also a redefinition of the organization structure.  

ISO/IEC 24029-2:2023, Artificial intelligence (AI) — Assessment of the robustness of neural networks 

— Part 2: Methodology for using formal methods . Since artificial neural networks can be a component 

of the autonomous AI system, formal methods to assess the robustness properties of neural networks 

are fundamental to certify and monitor autonomous systems. 

In railway transport, there are different levels of automation (Grade of Automation, GoA) defined in 

the IEC 62267 Standard ("Railway applications - Automated urban guided transport (AUGT) - Safety 

requirements”). This standard covers high-level safety requirements applicable to automated urban 

guided transport systems, with driverless or unattended self-propelled trains, operating on an 

exclusive guideway. 

DIN EN 50126, Railway Applications – The Specification and Demonstration of Reliability, 

Availability, Maintainability and Safety (RAMS) . It considers the generic aspects of the RAMS life 

cycle and provides a description of a Safety Management Process. It provides guidelines for defining 

requirements, conducting analyses, and demonstrating the reliability, availability, maintainability, 

and safety aspects throughout the lifecycle of railway applications.  

DIN EN 50128, Railway applications – Communication, signaling and processing systems. Outlines 

the procedural and technical criteria for crafting software intended for programmable electronic 

systems in railway control and protection applications. 

Standardization requirements 

Opportunities for standardization and deriving recommendations for critical operations management 

and support, especially regarding co-decision-making and human-computer interaction, as well as 

safety requirements. See also UC1.Railway. 

1.8 Societal concerns 

Societal concerns 

Description 

Privacy and data protection: The use of AI in railway scheduling involves the collection and 

analysis of large volumes of data, including potentially sensitive information. There is a concern 

about how this data is stored, processed, and protected, especially in compliance with data protection 

regulations like GDPR. Ensuring the privacy and security of passenger and employee data is 

paramount. 

Transparency and accountability: There is a societal demand for transparency in how AI systems 

make decisions, especially in critical infrastructure like railway systems. The public might be 

concerned about the lack of understanding of AI decision-making processes and the accountability 

mechanisms in place in case of failures or errors. 

https://github.com/flatland-association/flatland-rl
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Employment and skill shift: The automation of train scheduling might lead to concerns about job 

displacement and the need for reskilling of railway staff. While AI can optimize operations, it also 

changes the nature of work, requiring a shift in skills for human operators who now need to oversee 

and interact with advanced AI systems. 

Public trust and acceptance: For the successful implementation of AI in public transportation, 

gaining and maintaining public trust is crucial. There may be apprehensions and resistance from the 

public regarding the shift to AI-driven systems, especially among those accustomed to traditional 

methods. 

Safety and security: The use of AI-systems for critical operational scenarios raises concerns 

regarding the continued safety and security of these systems. Understanding failure modes, 

developing robust models, and ensuring resilience to adversarial attacks are among the many  topics 

to be tackled.  

Inequality: Such systems might introduce inequality in service quality for different geographic 

regions or categories of passengers due to the opacity of the system, bias and self -learning aspects.  

Sustainable Development Goals (SDG) to be achieved 

SDG9. Decent work and economic growth / SDG9. Industry, innovation and infrastructure / SDG11. 

Sustainable cities and communities / SDG13. Climate action 

2 Environment characteristics 

Data characteristics 

Observation 

space 

Partially observable with limitations due to the unpredictable duration of delays and 

malfunctions. 

Data update is near real-time (rather seconds than hours). 

Domain: defined on a continuous space. 

Size: Depending on the type of observation considered local or global the total size 

can depend, but will generally be very large. 

Noise: The observation can be noisy due to the communication system and the 

various signaling devices (signal box). 

(In addition to more than 10,000 trains (per day), there are over 32,000 signals and 

over 14,000 switches in the Swiss rail network. All of this information must be taken 

into account and observed, thus the global observation is very large.)  

Action space 

The action space of the environment is mixed. Actions like which route to take on a 

switch are discrete as well as decisions like if a train should accelerate or decelerate. 

However, dependent on the algorithmic approach, the rate of acceleration, 

deceleration, the velocity to move forward and similar can be model led both discrete 

and continuously. 

Also dependent on the algorithmic approach is the dimension of the action space. 

While the action space grows linearly with the number of trains for the algorithmic 

part, it grows exponentially if there is a central actor controlling all the trains. The 

action space of the human dispatcher is in any case exponentially growing with the 

number of trains. 

Further, the dimensionality of the action space depends on infrastructure and 

timetable elements like switches, signals and scheduled stops. Hereby, the impact 

on the dimensionality of the action space depends not only on the nature of the actor 

in the algorithmic part but also on the type of task, i.e. if the task is tackled 

episodically or sequentially on the algorithmic side. For the human dispatcher, the 

task is generally considered to be sequential, since an action is usually dependent 

on previous actions taken. 

Time horizon: for an action is typically from a few minutes to a couple of hours.  

The action space of the flatland environment is 5 (go left, go forward, go right, stop, 

none). However, each train run (agent) must perform one of these basic actions at 

each decision point (time step). This means that the total number of actions to be 
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selected is very large and stays in linear relation to the number of agents - i.e. in a 

problem-solving scenario with n agents and m time steps, the actions should be 

chosen in such a way that the combination of selected actions leads to the desired 

outcome or optimal solution. Each agent has a set of a actions to choose from, from 

which they must select one at each time step. Therefore, the solution involves n x m 

x a possible actions. (Up to 800 trains run simultaneously on the Swiss rail network. 

In many cases they interact directly or indirectly with each other.)  

Type of task 

The nature of the task depends on the algorithmic approach. While AI models can 

determine which action to take fully based on the current state without including 

information about past actions and would therefore be considered episodic, other 

approaches can, to a large degree, approach the problem-solving as a sequential 

task, for example, if planning is involved. The human dispatcher usually approaches 

the task sequentially. 

Sources of 

uncertainty 

Stochastic, with the following sources of uncertainty: 

1) Weather conditions can impact, e.g. the friction of wheels on rails which leads 

to different acceleration and deceleration behavior. 

2) The travel demand influencing both the total load of a train and the delay to 

board other passengers. 

3) Disruptions: Train level – locomotives or other rolling stock issue that may arise 

and results into a delay; Infrastructure level – signal malfunctions or construction 

sites. 

4) Sensors and communication level – a failure may introduce noise and 

uncertainty in the observation of the environment. 

Environment 

model 

availability 

A specific model of the environment is not available. Although a good approximation 

of it can be achieved as the basic laws of physics are defined and clear. However, 

a model of the environment will be simplified in general and subject to uncertainty 

(see above).  

Human-AI 

interaction 

Co-learning between the human and AI: The interaction between humans and AI is 

crucial in this specific use case. The use case allows for bidirectional communication 

in the decision-making problem, enabling humans to both use the system as a 

supporting tool for making decisions and to provide additional context and feedback 

to the AI to make the decision. 

3 Technical details 

3.1 Actors 

 

Actor Name 

 

Actor Description  

Dispatcher 

The dispatcher is a human responsible for monitoring and analyzing 

railway traffic. The main role is to ensure the safe and efficient 

movement of trains by controlling the flow of traffic and making decisions 

based on real-time information. The dispatcher determines the order of 

trains and may deviate from planned routes when necessary to 

accommodate unexpected situations or optimize the overall operation. 

The decisions play a crucial role in maintaining the smooth functioning of 

the railway system. 

Traffic control system 

The traffic control system collects information such as traffic signals, 

train positions, and current train speeds and also provides a human-

machine interface for controlling ongoing traffic. The system's goal is to 

manage the flow of traffic efficiently, centrally, and safely. This 

necessitates the comprehensive collection of available information to 
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effectively support the decision-making process, which is primarily 

performed by human dispatchers. Consequently, the traffic control 

system is vital and should be implemented with a human-centered 

approach unless a fully automated solution is available. 

Train run (Driver) 

A train run refers to the operation of a train on a specific route or journey 

from one station to another. It encompasses the entire process of a train 

traveling along its designated path, including departure from the 

originating station, intermediate stops (if any), and arrival at the 

destination station. The current position and speed of the train are 

communicated to the traffic control system. 
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4 Step-by-step analysis of use case 

4.1 Overview of scenarios 

 

Scenario conditions 

No. Scenario 

name 

Scenario description Triggering event Pre-condition Post-condition 

1 
Reactive 

Re-Scheduling  

The reactive re-

scheduling by the 

human-AI team once a 

deviation or 

disturbance has 

already occurred. 

An emerging 

disruption or 

deviation 

occurring  

(e.g.. blocked 

track, malfunction 

train) 

Intended service: a set of train runs with Start- 

and end location, a sequence of commercial 

stops, both with time information (Latest 

arrival, minimal dwell time, earliest departure).  

An initial (microscopic) operational plan that is 

executable and fulfils the intended services 

such as the arrival and departure times of 

trains at commercial stops. 

System has produced a new 

operation plan that is executable in 

the simulation and leads to an 

“acceptable” state at the end of the 

scenario 

2 

Co-learning for 

reactive re-

scheduling 

The co-learning 

process initialized by 

the reactive re-

scheduling by the 

human-AI team once a 

deviation or 

disturbance has 

already occurred. 

Human and AI 

action and 

interaction during 

the re-scheduling 

process occurring 

after a disruption 

or deviation. 

Initial human expertise and initial AI model 

required for corrective problem solving (e.g. 

solution generation). 

Improved human expertise and/or 

improved AI model required for 

corrective problem solving. 

The improvement was the result of 

human-AI interaction explicitly 

supporting the human’s and/or the 

AI’s learning processes. 

3 
Proactive re-

scheduling  

Proactive re-

scheduling by the 

human-AI team upon 

detection of weak 

signals. 

Detection of 

precursors or 

weak signals 

indicating a 

probability of 

larger disruptions 

and deviation in 

the future 

Intended service: a set of train runs with Start- 

and end location, a sequence of commercial 

stops, both with time information (Latest 

arrival, minimal dwell time, earliest departure).  

An initial (microscopic) operational plan that is 

executable and fulfils the intended services 

such as the arrival and departure times of 

trains at commercial stops. 

System has produced a new 

operation plan that is executable in 

the simulation and leads to an 

“acceptable” state at the end of the 

scenario without the presence of 

any additional weak signals. 

4 

Co-learning for 

proactive re-

scheduling 

Co-learning process 

initialized by the 

proactive re-scheduling 

Human and AI 

agent action and 

interaction during 

Initial human expertise and initial AI model 

required for preventive problem solving (e.g. 

Improved human expertise and/or 

improved AI model required for 

preventive problem solving. 
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By the human-AI team the detection and 

rescheduling 

phases. 

problem detection, identification of leverage 

points). 

The improvement was the result of 

human-AI interaction explicitly 

supporting the human’s and/or the 

AI’s learning processes. 
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4.2 Steps of scenario 

Step 

no. 

Event Name of 

process/ 

activity 

Description of process/ activity 

Service 

Information 

producer (actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

Requirement 

1 Start Definition of 

system 

parameters 

Detailed parameters are set for the pre-

planned schedule, including the 

prioritization of trains in case of 

disruptions, acceptable delay margins, 

and specific criteria for train prioritization 

(e.g., passenger load, destination 

importance). This step also includes the 

configuration of safety systems, network 

capacity limits, and any special 

operational requirements unique to 

certain routes or times. 

Administrator 

 

Network 

Operator 

SYSPAR  

2 System 

params 

defined 

Set up / 

configuration 

of human-AI 

teaming 

The human defines the boundary 

requirements, including the flexible 

allocation of decision-making authority 

between human and machine. 

Dispatcher AI Assistant CONFIG  

3 Teaming 

initialized 

Schedule 

execution 

The initial operational plan is put into 

action. This includes the deployment of 

trains according to the pre-planned 

schedule, monitoring of train movements, 

adherence to the sequence of commercial 

stops, and ensuring compliance with 

operational requirements like safety 

systems and traffic density management. 

Dispatcher TMS 

 

EXECPLAN  
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4 Information 

presented 

Monitoring At any time in operations the human 

dispatcher can monitor the flow of traffic 

in the area of control. There exist visual 

displays of the traffic running through the 

network and in addition metrics are 

available. Information about the current 

intended plan is available. 

AI Assistant Dispatcher STATE  

5 Deviation 

detected 

Detection of 

deviation 

At any time in operations an emerging 

deviation of the actual state of the system 

from the planned state is detected by the 

human-AI team. The re-scheduling 

process can be initiated by a variety of 

triggers such as infrastructure changes 

(e.g., blocked tracks, malfunctioning 

switches), train delays, equipment 

malfunctions or potential future issues. 

The system is designed to detect these 

deviations in real-time and assess their 

impact on the overall schedule. The 

system also predicts issues that might 

become relevant in the future.   

 

For scenarios 1 and 3, this step consists 

of detecting deviations (reactive) 

which have already occurred. In 

scenarios 2 and 4, the human-AI team 

predict (proactive) potential 

deviations. These detected / 

predicted deviations then trigger re-

scheduling.  

AI Assistant/ 

Dispatcher 

Dispatcher / 

AI Assistant 

DEVINFO  
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6 Suggestion 

provided 

Re-scheduling 

suggestion 

Upon detecting a current or future 

deviation by the system or human, the 

system provides a detailed display of the 

issue, including its nature, location, and 

expected impact on the schedule. Either 

the human or the system starts with a 

suggestion, leading to two further paths of 

actions:  

The system provides suggestions. The 

human provides feedback (e.g., context 

that is not known to the system). AI 

adapts the solution based on the 

feedback. The human agent can choose 

to select one of the suggestions by the AI 

systems, initiate a new solution search, or 

choose their own course of action.  

The human provides a suggestion The AI 

system provides quantified feedback to 

the human suggestions, including own 

and adapted suggestions. Human selects 

one of the proposed solutions and 

initiate’s action. Alternatively, the human 

formulates hypothesis, the AI system 

provides evidence for and against these 

hypothesis. 

AI Assistant/ 

Dispatcher 

Dispatcher / 

AI Assistant 

 

RESUG  

7 Suggestion 

received 

Execute 

solution 

The newly adapted schedule is then put 

into operation. The system continuously 

monitors for any further deviations and 

adjusts the schedule as needed to 

maintain operational efficiency and 

adherence to time constraints. 

Dispatcher TMS RESCHED  
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8 New 

schedule 

put into 

operation 

Human review 

and system 

adjustment 

A human supervisor reviews the 

performance of the system, analyzing 

how effectively it responded to deviations 

and the impact on service delivery. Based 

on this review, adjustments are made to 

the system's parameters, such as altering 

the prioritization criteria, adjusting 

acceptable delay thresholds, or refining 

the algorithm for schedule recalculations. 

This step ensures continuous learning 

and improvement of the system based on 

operational experiences and 

organizational goals. 

AI Assistant Dispatcher REPORT  

9 Observation

s batch 

recorded / 

Training 

session 

Co-learning For scenarios 3 and 4, an additional co-

learning loop occurs, consisting of a loop 

on the side of the AI agent and one on 

the side of the human agent.  

AI agent learning loop uses observations 

of the human decision-making process to 

improve its own decisions. Human 

learning process (e.g., to detect 

emerging deviations or to develop 

solutions) is explicitly supported by 

human-AI interaction. 

TMS AI Assistant / 

Dispatcher 

OBS  
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5 Information exchanged 

 

Information exchanged 

Information 

exchanged (ID)  

Name of information Description of information exchanged 

   

SYSPAR System Parameters Series of parameters necessary to initialize the 

environment and providing all operative 

information to the agent(s).  

CONFIG Configuration of human-AI 

teaming 

Parameters defining the “work agreement” 

between the AI and human agent, for example 

the allocation of decision authority.  

EXECPLAN Operational plan Planned schedule to be executed, including 

information such as commercial stop sequence 

and operational requirements. 

STATE State of the system Detailed information on the current state of the 

system.  

DEVINFO Devion information Detailed information on the deviation, 

including its nature, location, and expected 

impact on the schedule. 

RESUG Re-scheduling suggestions Suggestion for rescheduling actions developed 

by the AI agent – e.g. list of actions to take in 

the next update cycles 

RESCHED New operational plan New schedule developed by the human-AI 

team. 

REPORT Report of adjusted plan 

performance 

Detailed performance report of system 

performance after executing the new 

operational plan, provided by the AI agent. 

OBS Recorded observations Series of rescheduling events and states 

including e.g. train run position, train run 

running state such as malfunctioning or good. 

6 Requirements 

Requirements  

Categories 

ID 

Category name for 

requirements 

Category description 

Ro Robustness 

Encompasses both its technical robustness (ability of a 

system to maintain its level of performance under a 

variety of circumstances) as well as its robustness from 

a social perspective (ensuring that the AI system duly 

takes into account the context and environment in which 

the system operates). This is crucial to ensure that, even 

with good intentions, no unintentional harm can occur.  

Source: EU-U.S. Terminology and Taxonomy for 

Artificial Intelligence. First Edition 

E Efficiency 

Ability of an AI system to achieve its goals or perform its 

tasks with optimal use of resources, including time, 

computational power, and data. 

I Interpretability 

Make the behavior and predictions of AI systems 

understandable to humans, i.e., degree to which a 

human can understand the cause of a decision. Source: 

Molnar, Christoph. Interpretable machine learning. Lulu. 

com, 2020. 
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Re Regulatory and legal 

The AI system's capacity to meet its objectives while 

complying with relevant laws, regulations, and 

standards. 

Fa Fairness 

Ensure the recommendations and predictions of the AI 

system are in line with the principles of fairness (i.e., fair 

distribution of the benefits and strain/harm) 

O Other 
Other non-function requirements related to 

environmental concerns and maintenance 

Requirement 

R-ID 

 

Requirement name Requirement description 

Ro-1 

Reasonable 

recommendations in 

new situations (not seen 

during model training) 

Systems provides reasonable solutions for situations not 

seen during training. 

Ro-2 

Good performance in 

operating scenarios with 

high variability 

System performs well in situations with many fast-

changing elements. 

Ro-3 
Retrospective quality 

control 

Quality of provided options can be assessed in 

retrospect. 

E-1 

Capacity to handle 

operating scenarios with 

high complexity 

System derives options fast and with high quality in 

complex situations with many trains, switches and other 

elements involved. 

E-2 Scalability 

Concerns the system's ability to handle growth, such as 

increased train traffic or network expansion, without 

performance degradation. This ensures the system 

remains effective as the scale of railway operations 

increases. 

E-3 
Generalization to 

different scenarios 

The system’s ability to handle previously unseen 

scenarios and generalize to areas of observation and 

action space not visited during training (e.g., different 

speed profiles, rails configuration etc.) 

I-1 
Interpretability of 

suggestions 

The process through which the AI system learns and 

operates, including how it generates suggestions, is 

transparent and understandable to the human 

dispatcher. Further, the decision making that leads to 

the suggestion as well as its limitations are explained to 

the human dispatcher. 

Re-1 

Compliance with legal 

standards and 

regulations 

Adherence to data protection laws, safety regulations, 

cybersecurity, and ethical guidelines governing AI 

systems in public transportation and the EU AI Act. 

Fa-1 Distribution of Delays 

The system can be analysed to understand the 

distribution of delays according to certain fairness 

criteries (eg. region, RUOMs, groups, individuals) and 

allows to take measures to increase the fair distribution 

of delays. 

Re-2 RUOM Favouritism  

The system should not unfairly favour specific RUOMs. 

Re-scheduling in railway operations must impact the 

RUOMs according to official policy. Measures should be 

put in place to ensure that these constraints are 

observed. 

O-1 Maintainability 

Involves the ease with which the system can be 

maintained and updated. This includes the ability to 

diagnose and fix issues, update software, and adapt to 

changing operational requirements. 
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O-2 
Environmental 

Sustainability 

Addresses the system's impact on the environment. This 

includes considerations such as energy efficiency of the 

AI algorithms, and the broader ecological footprint of the 

system's implementation and operation. 

 

7 Common Terms and Definitions 

 

Common Terms and Definitions  

Term Definition 

Railway Undertaking 

Operating Managers (RUOMs) 

Company or organization that operates trains or provides rail 

transport services. 

Traffic Management System 

(TMS) 

Provides permanent control across the network, automatically sets 

routes for trains and logs train movements as well as detects and 

solves potential conflicts.  

Co-learning 

Co-learning indicate that human or AI in a team has the ability that 

can interact and learn from/with, and grow with their collaborator. The 

goal of co-learning is to support two dynamic growing entities to build 

mutual understanding, facilitate mutual benefit, and enable mutual 

growth over time. Source: Huang, Y. C., Cheng, Y. T., Chen, L. L., 

Hsu, J. Y. J. (2019). Human-AI Co-learning for data-driven AI. arXiv 

preprint arXiv:1910.12544. 

Trains re-scheduling 

Monitoring the movement of trains on a railway network and reacting 

to unexpected events, such as signal failures, track blockages, or 

weather events that disrupt operations, to other significant delays, 

and proactively to predicted deviations that affect planned 

operations. Re-scheduling measures include changing a train’s 

speed, path, or platform for stopping. 
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UC1.ATM: AIRSPACE SECTORISATION ASSISTANT 

1 Description of the use case 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC1.ATM Air Traffic Management Airspace sectorisation assistant 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 04.12.2023 Clark Borst (TUD) Initial document 

0.2 15.01.2024 Clark Borst (TUD) Major revision 

0.3 03.02.2024 Ricardo Bessa Revision 

0.4 26.02.2024 Cristina Félix Revision 

1.0 15.04.2024 Cristina Félix Final revision with new KPI’s and ATM 

Workshop feedback update 

1.1 12.05.2024 Clark Borst Update scenario details with steps 

1.2 14.06.2024 Anna Fedorova Update 

1.3 19.06.2024 Cristina Félix 

Joaquim Geraldes 

Tiago Lima Reis 

Final Revision 

1.4 08.07.2024 Ricardo Bessa Final version 

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope 

Air traffic density in European airspaces is steadily increasing. At the same time, 

pressing economic and environmental concerns force a fundamental shift towards 

time- and trajectory-based air traffic operations. Taken together, increased traffic 

loads and operational complexities may eventually drive the workload peaks of the 

tactical air traffic controller (ATCO) beyond acceptable thresholds, threatening the 

overall safety of the Air Traffic Management (ATM) system and hindering a smooth 

transition toward a sustainable future of ATM. 

Solutions to manage the workload of ATCOs can already be applied in pre-tactical 

phases, for example, by splitting a large Flight Information Region (FIR) into several 

smaller airspace sectors that each are under the control of a single ATCO. 

Generally, pre-tactical ATM Sector Management ensures optimal sector 

configurations are always used to split traffic (and workload) over more ATCOs 

during tactical operations. Sectorisation is primarily meant to better handle daily 

traffic fluctuations, making optimal use of the personnel available. 

Today, sectorisation is the sole responsibility of the ATC supervisor, who exclusively 

decides when and how to split and merge sectors best, warranted by situational 

demands and available ATCO personnel. Only scattered information is available on 

different platforms to aid supervisors in this task. Still, there is currently no traffic 
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pre-analysis tool and/or integrated decision-support system to assist in or even fully 

automate the sectorisation process.  

Objective(s) 

The system's objective is to partially and fully automate the sectorisation process to 

assist or replace the ATC supervisor in deciding when and how to split and merge 

sectors to balance the workload of tactical ATCOs. 

 

1.4 Narrative of use case 

Narrative of Use Case 

Short description 

At ATC centers, such as Santa Maria Oceanic Area Control Centre (OACC), as part of NAV 

Portugal ANSP, a staff manager (i.e., ATC supervisor) exclusively decides when and how to split 

best and merge sectors, warranted by situational demands and available ATCO personnel. The 

degrees of freedom in sectorization involve considering horizontal (2D geometry) and/or vertical 

(altitude) constraints and can thus result in split sectors horizontally and/or vertically. 

Typically, under nominal conditions, the supervisor can install several pre-fab sectorization 

options. However, unexpected events, such as deteriorated weather conditions, flight emergencies 

(e.g., aircraft equipment failure), and unscheduled ATC personnel shortages (e.g., due to sickness) 

may require non-standard sectorisations to be installed.  

An AI-assistant, capable of operating under various levels of automation, will provide 

recommendations or even execute decisions on how to split the sector best horizontally, vertically, 

or both to balance ATCO workload while ensuring safety (i.e., adhere to horizontal and vertical 

separation criteria) and efficient traffic flows (i.e., reduce inefficiencies in flown track miles). The 

AI-assistant will also act in a bidirectional way by allowing the human operator to nudge the 

AI-generated recommendations in directions that seem more favorable.  

Complete description 

Description of the sectorization task: Sectorisation involves retrieving and integrating several data 

information sources that are often gathered from different (digital) platforms, such as: 

• Expected traffic counts (available from EUROCONTROL CFMU) 

• Air-ground and coordination message count 

• Weather Information (METEO fore- and now casts)  

• Airspace Reservations (e.g., military airspace, temporary ‘no-fly’ zones) 

• Coordination Complexity (e.g., between area and arrival controllers)  

• Terminal Area Complexity (e.g., weather-related airport capacity limitations) 

• Equipment issues (e.g., communication issues between pilots and air traffic controllers)  

• ATCO staff schedules (depending on traffic demands) 

Based on the available ATCO personnel, including accounting for mandatory breaks after a 2.5 -hour 

work cycle, the FIR is divided into several smaller airspace sectors, each under control by a single 

ATCO. How and when to best split and merge sectors horizontally and/or vertically depends on how 

well the traffic situation can be predicted over a specific time horizon. In general, the shorter the 

prediction horizon, the less uncertainty plays a role, but the more ad-hoc fluctuations in sectorisations 

can be expected with changing traffic loads. Therefore, a successful sectorization should be predictable 

and robust over a sufficiently long time horizon.  

At Santa Maria Oceanic Area Control Centre (OACC), as part of NAV Portugal ANSP, there are 3 

pre-defined sectorization plans to be used by the supervisor under nominal operational conditions:  

1. Unified Position. Used in low traffic and/or complexity situations – one ATCO is responsible 

for working the full airspace. 

2. VHF sector and non-VHF sector. Used medium/high traffic and/or complex situations. This 

sectorization is used mostly when there is much terminal traffic or high volume inside the VHF 

coverage area. If the situation justifies, there is the possibility to vertically split the non-VHF 
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sector into several sectors to adjust the workload accordingly. The supervisor can also 

horizontally split the VHF sector into 3 different zones. 

3. North sector and South/Planning sector. Used in medium/high traffic and/or complex 

situations. This sectorization is used mostly in low terminal traffic or low volume inside the 

VHF coverage area but with a high frequency of inbound coordination messages. If the 

situation justifies, there is the possibility of removing the VHF sector, creating 1 north sector, 

1 south/planning sector, and 1 VHF coverage sector. In any of the examples above, the staff 

manager can split the South sector into several vertical sub-sectors.  

There might exist more unexplored sectorization options, especially for novel/off -nominal operational 

conditions. In addition, the ATM community expects ATC staff shortages in the near future, requiring 

more flexibility in sector organizations. A hybrid AI system, based on supervised and unsupervised AI 

methods, could predict and provide sectorization solutions for nominal and off-nominal situations by 

learning from historical data and exploring new sector structures based on synthetic data generation.    

System description and role of the human operator:  The sectorization task is performed in a 

highly automated manner by an AI-based system. This system automatically observes the real-

time data from all relevant ATM platforms, makes predictions on how and when to sectorise, and 

implements prediction results either as recommendations (to the human supervisor) or 

automatically installs the sectorization plan and bypasses the human. The AI system can be 

considered a new tool supervised and evaluated by a human expert. The AI system communicates 

its decisions on an auxiliary display that, for example, visualizes sector configurations on a map-like 

interface.  

The role of the human operator (here, the ATC supervisor) is to evaluate the AI -based 

recommendations by requesting additional information and explanations, accepting or rejecting 

advisories, and nudging AI decisions in a different direction by manual interventions. All decisions and 

interactions will be logged, allowing the AI system to learn from human preferences continuously. 

Steps involved in the use case. The following steps are performed in the ATM sectorization use case: 

1. Definition and identification of the critical system parameters.  Here, the relevant ATM 

system and contextual data needed for the sectorization task are gathered from (various) 

digital ATM platforms and integrated into a coherent, time-stamped “feature space” that drives 

sectorization predictions. Training and validation of the AI system are based on historical and 

synthetic/artificial data.  

2. Sectorisation implementation: Based on predicted traffic, environment, and staffing 

conditions, a sectorization plan is predicted. The solution is presented to the human supervisor 

as a recommendation on an auxiliary interface. When the AI system acts at a lower level of 

automation, the human supervisor manually implements the sector plans. At higher levels of 

automation, the AI recommendations are executed based on “management by consent” (= AI 

implements only when the human accepts) or “management by exception” (= AI implements, 

unless the human vetoes). At the highest level of automation, the AI system is automatically 

implemented, and humans can only revise the system’s decisions afterward. 

3. Triggering sectorization revisions: (Significant) changes in traffic loads, environment 

conditions, and staff availability can all trigger sectorization revisions. Parameters and 

thresholds warranting revisions will need to be defined and should be configurable for 

operational scenario generation.  

4. Human review and adjustment: Depending on the level of automation set for the AI system, 

the role of the human supervisor ranges from manually implementing a sectorization plan to 

revising AI-implemented plans (see step 2). Humans can consult additional information and 

explanations underpinning AI’s decisions on demand, which is expected to foster trust in and 

acceptance of the AI system. As all human interactions are recorded, data will become 

available on what type of explanation is used most frequently and how certain explanations 

impact the acceptance of AI decisions. Such data can be used to improve the combined 

human-AI team performance.    

Stakeholders 

ATC staff manager/supervisor: The staff manager/supervisor located in the operational control room 

is responsible for the sectorization task. 
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ANSPs responsible for the FIR: e.g., NAV Portugal, the Portuguese Air Navigation Service Provider 

(ANSP), responsible for the Santa Maria Flight Information Region (FIR) and the Lisbon FIR.  

Other ANSPs: Neighboring ANSPs, connected to the NAV FIRs (e.g., ONDA (Morocco) and ENAIRE 

(Spain)). 

Tactical Air Traffic Controller: A single human ATCO responsible for maintaining safe, efficient and 

expeditious flows of air traffic within a single airspace sector.  

Airlines and pilots: Airlines for adhering to planned operations; flight crew responsible for a safe and 

efficient execution of a planned flight. 

Stakeholders’ assets, values  

ATC staff manager / supervisor 

• Available personnel: Low-quality AI predictions may yield infeasible sectorization solutions 

(e.g., insufficient ATC personnel to handle all sectors) 

• Reputation: low performance of the AI system can lead to a bad reputation of the supervisor 

in devising workable and acceptable sectorisations (e.g., adhering to the mandatory ATCO 

breaks and preserving stability of a sectorization decision within a time window) 

ANSPs (incl. NAV and neighboring ANSPs)   

• Reputation: the ability to maintain efficient airspace usage and ability to coordinate traffic flows 

with neighboring FIRs 

• Safety: AI system recommendations should avoid creating traffic hotspots 

Tactical Air Traffic Controller (ATCO) 

• (Mental) workload and Situation awareness: AI-recommended sectorization should balance 

traffic loads in ways that adhere to acceptable workload limits and enable ATCOs to maintain 

situation awareness   

Airlines and pilots 

• Reputation: adhering to planned flights while reducing inefficiencies in flown track miles, 

possibly leading to delays  

System’s threats and vulnerabilities  

Accountability: Who is responsible for the bad performance of the AI system  

Unexpected events: Air traffic operations can be affected by events related to unexpected weather 

(e.g., local adverse weather cells, off-nominal wind conditions), flight emergencies (e.g., aircraft 

equipment failure), and unscheduled ATC personnel shortages (e.g., due to sickness). The scale of 

such events could lead to invalid or no solutions at all, for example, in the event of a volcano eruption 

or hurricane that requires closing off one entire airspace. 

Quality of data exchange infrastructure: To ensure optimal decision-making, access to high-quality, 

real-time data will be required. Currently, information is scattered over various ATM systems, requiring 

a sufficiently robust IT infrastructure that can distribute data over the network to and from various Air 

Traffic Service (ATS) units. Delayed and uncertain information could negatively impact the quality of 

decisions. 

 

1.5 Key performance indicators (KPI) 

Name Description 
Reference to the mentioned use case 

objectives 

Acceptance 

score 

Measure of acceptance degree of the 

generated AI solution for human 

operators 

Reflects the acceptance choice in the 

AI’s system decision. 

(0% - 100%).  

Measured directly from 

yes/no/revision input, translated 

into % across the operator’s multiple 

interactions with AI-generated 

solutions 
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Agreement 

score 

How much the supervisor agrees with the 

AI-generated sectorisation.  

Note: agreement and acceptance are not 

the same. One can accept a solution but 

not necessarily agree with it. A good 

system fosters a high-level agreement 

This reflects the degree of agreement 

in the AI system. 

(Likert, 7-points scale) 

Trust in AI 

solutions 

score 

How much of the operator's confidence in 

the AI-generated solution, with and 

without the need for additional 

explanations. 

This reflects trust in the AI system’s 

decision.  

(Likert, 7-points scale) 

Decision 

Support 

satisfaction 

System effectiveness in supporting the 

efficient decision-making by airspace 

managers 

Reflects the effectiveness of the AI 

system. 

(Likert, 7-points scale) 

Efficiency 

score 

How many times an AI-generated solution 

was revised. A good system would 

minimize the number of human 

interventions. 

Reflects the efficiency of the 

combined human-AI team 

performance.  

(0% - 100%).  

Measured directly from user input 

(was the solution modified? Yes/no), 

translated into % across the 

operator's multiple interactions with 

AI-generated solutions 

Significance 

of human 

revisions 

The extent of human revisions compared 

to the AI decision. Here, small, localized 

revisions (e.g., merging two small 

adjacent sectors in the northeast corner 

of the FIR) would be rated differently 

from larger or multiple revisions across 

various areas in the FIR.  

Reflects the AI system performance. 

(LOW, MED, HIGH interaction %). 

Measured directly from user input (of 

the modified solutions, how much 

interaction was measured? LOW 

number and extent of changes, 

MEDIUM number, and extent of 

changes HIGH number and extent of 

changes), translated into % across 

the operator's multiple interactions 

with AI-generated solutions 

System 

Reliability 

System trustworthiness - operation as 

expected under several conditions 

without major failures. 

Reflects the efficiency of the 

combined human-AI team 

performance.  

(0%-100%). 

Measured directly from how many 

times the AI-generated solutions are 

sound or lead to failures 

AI prediction 

robustness 

How accurately and robustly does the AI 

system predict a certain sectorisation 

over a certain time horizon. Does re-

evaluation of the sector structure in a 

shorter time horizon lead to different 

solutions? It is undesirable if small 

variations in capacity lead to significant 

differences in the sector 

structures/routings. 

Reflects the efficiency of the 

combined human-AI team 

performance.  

Measured directly from the AI-

generated solutions. How big a 

variation in capacity has to be to 

cause the AI to revise its previous 

solutions. 

Prompt 

demand rate 

Assess how many times the ATCO 

prompts additional explanations from the 

AI-generated solutions. 

Reflects the AI system performance. 

(LOW, MED, HIGH interaction %) 

Measured directly from user input 

(how much interaction with 

explanations occurred and how the 

generated scenario is rated using the 

'dynamic density index', measuring 
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complexity), translated into % across 

the operator's multiple interactions 

with AI-generated solutions 

AI 

co-learning 

capability 

Does the ATCO feel that by the end of 

the trial runs, the AI has learned his 

preferences? 

Links to the desired output of the AI 

system. 

(Likert, 7-points scale). 

Human 

Response 

Time 

Needed response time to react to AI 

advisory/information 

(LOW, MED, HIGH response time %). 

Measured directly from user input 

(dismiss a window when they feel 

satisfied after evaluating a scenario, 

LOW less than 5 min, MEDIUM 5-10 

min, HIGH more than 15 minutes), 

translated into % across the 

operator's multiple interactions with 

AI-generated solutions. 

1.6 Features of use case 

Task(s) Planning, prediction, optimization, interactivity, recommendation. 

Method(s) 
Supervised Learning (e.g., ensemble decision trees) and possibly Reinforcement 

learning. 

Platform BlueSky digital environment. 

1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. Autonomous management and optimization of sectorisation in pre-tactical ATM 

operations are high-stake tasks, and therefore, risk management specifically related to AI is 

fundamental.  

ISO/IEC 38507:2022, Information technology — Governance of IT — Governance implications of 

the use of artificial intelligence by organizations. Autonomous AI requires an analysis of 

governance implications and also a redefinition of the organization structure.  

ISO/IEC 24029-2:2023, Artificial intelligence (AI) — Assessment of the robustness of neural 

networks — Part 2: Methodology for using formal methods. Since artificial neural networks can be 

a component of the autonomous AI system,  formal methods to assess the robustness properties 

of neural networks are fundamental to certify and monitor autonomous systems.  

ICAO DOC 4444 – Standards and Recommended Practices in Air Traffic Management 

ERNIP Part 3 – EUROCONTROL Procedures for Airspace Management, Airspace Management 

Handbook for the Application of the Concept of the Flexible Use of Airspace. 

https://www.sesarju.eu/masterplan2020 - European ATM Master Plan 

Standardization requirements 

Establish a standard set of KPIs for measuring the performance of AI-based sectorisation systems 

and how the AI performance compares to heuristic methods in prediction and planning systems.  

 

1.8 Societal concerns 

Societal concerns 

Description 

https://github.com/TUDelft-CNS-ATM/bluesky
https://www.sesarju.eu/masterplan2020
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Increased air traffic density in Europe: The challenge of maintaining safe and efficient air traffic 

management under increased traffic loads while adhering to the workload capacity limits of tactical 

ATCOs. 

Privacy and data protection: The use of AI in ATM sectorisation involves the collection and 

analysis of large volumes of data, including potentially sensitive information. There is a concern 

about how data is stored, processed, and protected, especially in compliance with data prote ction 

regulations like GDPR. 

Transparency and accountability: There is a societal demand for transparency in how AI 

systems make decisions, especially in high-stake transportation systems like ATM. The public 

might be concerned about the lack of understanding of AI decision-making processes and the 

accountability mechanisms in place in case of failures or errors. 

Employment and skill shift: The full automation of the sectorisation task might lead to concerns 

about job displacement and the need for reskilling of ATC staff. While AI can optimize operations, 

it also changes the nature of work, requiring a shift in skills for human operators who now need to 

oversee and interact with advanced AI systems. 

Public trust and acceptance: For the successful implementation of AI in air transportation, 

gaining and maintaining public trust is crucial. There may be apprehensions and resistance from 

the public regarding the shift to AI-driven systems, especially among those accustomed to 

traditional methods. 

Sustainable Development Goals (SGD) to be achieved 

SGD9. Industry, innovation and infrastructure / SGD11. Sustainable cities and communities / 

SGD13. Climate action 

 

2 Environment characteristics 

Data characteristics 

Observation 

space 

Partially observable. 

Data updates are near real-time with a certain look-ahead time (minutes up to 

hours). 

Domain: defined on a continuous space. 

Size: > 2000 flights per day, with > 10 observable states per flight, > 8 sectors with > 

20 coordination points (entry and exit points) per sector. . 

Noise: The observation of flight and sector data can be noisy due to unsynchronized 

update frequencies and data quality of various data platforms (e.g., meteo updates).  

Action space 

Mixed action space: sectorisation decisions are discrete (e.g., ‘split’ and ‘merge’), 

but sector geometry can vary on a continuous space depending on the algorithmic 

approach. 

Size: The action space of the human ATC staff manager is limited to the number of 

sectors to choose from and depends on ATCO staff availability, the number of flights , 

and the weather conditions (determining geographic restrictions) 

Time horizon: sectorisation actions range typically from a few minutes to a couple 

of hours (= pre-tactical operations) 

Type of task 

Human staff managers and AI assistants act in a sequential environment: the 

previous decisions can affect all future decisions. The next action of these agents 

depends on what action they have taken previously and what action they are 

supposed to take in the future. 

Sources of 

uncertainty 

Stochastic (weather forecasts, variability in traffic load, unpredicted ATCO staff 

shortage.) 

Environment Yes (aircraft performance models, ISA standard atmosphere) 
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model 

availability 

Human-AI 

interaction 

Co-learning between the human and AI: AI assistant proposes a sectorization plan, 

human evaluates plan, and human accepts or revises the plan (= feedback to AI 

assistant). 

3 Technical details 

3.1 Actors 

Actor Name 

 

Actor Description  

Staff supervisor 

The human staff supervisor is responsible for implementing a sectorisation 

plan on a pre-tactical time scale. The staff supervisor needs to evaluate 

the outputs of an AI assistant that aims to support the staff manager in 

generating sectorisation suggestions.   

AI assistant 

The AI assistant provides sectorisation plan suggestions to the staff 

supervisor. It takes predicted information about the environment from 

various systems (e.g., weather forecasts from METEO services, traffic 

loads from Central Flow Management Unit, ATCO staff schedule, etc.) and 

historical data to aid the human staff manager. In the training phase, it can 

act on the environment to evaluate its recommendations. In the 

evaluation/testing phase, the actions on the environment should be 

performed by the human only.   

Environment 

The staff manager interacts with the BlueSky digital environment and with 

the AI assistant through a secondary interface. The AI assistant can also 

portray its sectorisation recommendations directly in the BlueSky 

environment (top-down Earth map). 
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4 Step-by-step analysis of use case 

4.1 Overview of scenarios 

Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

1 
Nominal operational 

conditions 

The AI sectorisation system 

responds to predicted traffic 

fluctuations under nominal 

operational conditions. 

Variations in traffic loads over 

a typical day (24 hours) will be 

used as inputs. 

 

Fluctuations in traffic load over 24 

hours, including periods of inbound 

and outbound of Santa Maria FIR.    

Nominal ATCO 

staffing capacity 

The system proposes and/or 

executes acceptable 

sectorisation results and 

presents results on an 

auxiliary interface for the 

human supervisor to evaluate. 

2 
Environment 

perturbations 

This scenario deals with 

sudden changes in airspace 

availability due to adverse 

weather conditions of different 

magnitudes/scales, impacting 

sectorisation results.  

Over a 24-hour period, various 

durations and scales of weather-

related perturbations (e.g., off-

nominal wind conditions due to 

storms) may require off-standard 

sectorisations.  

Nominal ATCO 

staffing capacity 

The system proposes and/or 

executes off-standard 

sectorisation results and 

presents results on an 

auxiliary interface for the 

human supervisor to evaluate. 

3 
ATCO staff 

shortage 

This scenario deals with off-

nominal ATCO staffing 

capacities, impacting 

sectorisation results.  

Over a 24-hour period, various 

perturbations in ATCO staffing 

capacities (e.g., due to sickness) 

will require off-standard yet 

acceptable sectorisations. These 

events may be used in conjunction 

with environmental perturbations, 

simulating edge-case situations. 

Off-nominal ATCO 

staffing capacity 

The system proposes and/or 

executes off-standard 

sectorisation results and 

presents results on an 

auxiliary interface for the 

human supervisor to evaluate. 

4.2 Steps for all scenarios 

For each scenario the number of steps are the same and in-line with current practices in sectorisation on medium- to long-term time scales. 
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Step 

no. 

Event Name of 

process/ 

activity 

Description of process/ activity Service Information producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

1 Start The staff 

manager 

prepares his/her 

shift 

The staff manager looks at estimated traffic counts and 

operational conditions and, using his experience, decides on 

the sectorization plan. 

 

He/She looks at available ATCO staff during a shift, selects a 

maximum time horizon for a sector plan and enters that 

information into the system.  

Staff manager 

 

AI assistant 

 

SET 

 

2 Initialise 

sector plan 

AI assistant 

generates an 

initial sector 

plan 

The staff manager requests an initial sectorisation plan from 

the AI assistant. This plan includes portraying a horizontal 

and vertical sector layout on a map and/or secondary 

interface, a timeline showing ATCO staff occupancy per 

sector, and a time slider enabling the staff manager to 

preview changes in sectorisation plans on a map. The 

predicted state of the system in terms of traffic movements 

and weather conditions (e.g., wind) is also displayed and 

responsive to the time slider.  

AI assistant Staff 

manager 

SPLAN 

3 Plan 

evaluation 

The staff 

manager 

evaluates the 

sector plan 

The AI assistant may propose several alternative sector 

plans, each with a different probability value (based on 

historical data) and robustness score depending on available 

ATCO staff, fluctuations in predicted traffic load, and 

uncertainty in weather forecasts. Using the time slider, the 

staff manager can evaluate the probability and robustness 

scores for different times within the maximum look-ahead time 

horizon. 

AI assistant Staff 

manager 

STATE 

4 Human 

interacts 

The staff 

manager 

interacts with 

the sector plan 

The staff manager interacts with the suggested sector plan in 

one of the following ways: 1) accept the top-rated AI 

suggestion and implement it; 2) nudge the AI suggestions by 

making small changes (e.g., one merge or split); 3) revise 

large sections of the plan (e.g., revise multiple sectorisation 

events across various time horizons). 

Staff manager AI assistant 

 

DEC 
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5 Re-

schedule 

Trigger an alert 

to re-schedule 

The AI assistant monitors changes in predicted system and 

environmental states. When updated information deviates 

from the information and data that was used for the 

implemented sector plan, the AI assistant issues an alert, 

triggering the staff manager to go back to Step 2. 

AI assistant Staff 

manager 

AL 
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5 Information exchanged 

Information 

exchanged 

(ID) 

Name of information Description of information exchanged 

SET 
Inputs and settings for AI 

assistant 

Staff manager sets maximum time horizon and ATCO staff 

availability for the AI assistant 

SPLAN Sector plan AI assistant suggestions for sectorisation. 

STATE Predicted system state 

Predicted system state over a certain time period, including 

traffic load, weather conditions, ATCO shifts, sector 

topology, probability, and robustness score. 

DEC 
Human decision/interaction 

with the AI assistant operator 

Staff manager’s choice in terms of accepting, nudging, and 

revising. 

AL AI assistant alert 

AI assistant issuing an alert, signaling to the staff 

supervisor that data used for predictions have 

changed significantly, warranting re-scheduling.  

 

6 Requirements 

Requirements  

Categories 

ID 

Category name for requirements Category description 

Ro Robustness 

It encompasses both its technical robustness 

(the ability of a system to maintain its level of 

performance under a variety of circumstances) 

as well as its robustness from a social 

perspective (ensuring that the AI system duly 

considers the context and environment in which 

the system operates). This is crucial to ensure 

that, even with good intentions, no unintentional 

harm can occur.  

Source: EU-U.S. Terminology and Taxonomy for 

Artificial Intelligence. First Edition 

E Efficiency 

The ability of an AI system to achieve its goals or 

perform its tasks with optimal use of resources, 

including time, computational power, and data. 

I Interpretability 

Make the behavior and predictions of AI systems 

understandable to humans, i.e., the degree to 

which a human can understand the cause of a 

decision.  

Source: Molnar, Christoph. Interpretable 

machine learning. Lulu. com, 2020. 

Re Regulatory and legal 

The AI system's capacity to meet its objectives 

while complying with relevant laws, regulations, 

and ethical standards. 

O Other 
Other non-function requirements related to 

environmental concerns and maintenance 

Requirement 

R-ID 

 

Requirement name Requirement description 

Ro-1 
System resilience to unexpected 

events  

The AI system should work correctly under a 

variety of conditions and withstand operational 

disruptions. This includes resilience to 
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unexpected events like adverse weather and 

sudden changes in the ATCO staff availability. 

Ro-2 Cyber and data security 

Focuses on protecting the system against 

unauthorized access, cyber threats, and data 

breaches. This ensures the integrity and 

confidentiality of sensitive operational data and 

safeguards the system from malicious attacks. 

Ro-3 
System’s reliable operation and 

decisions 

Shall show the capacity to perform its required 

functions under stated conditions for a specified 

period. This includes maintaining consistent 

performance and minimizing system failures or 

errors. 

E-1 
Capability to optimize resources 

and operations 

The system shall maximize airspace and ATCO 

staffing utilization. 

E-2 Scalability 

Concerns the system's ability to handle growth in 

traffic loads, such as increased air traffic or 

airspace expansion, without performance 

degradation. This ensures the system remains 

effective as the scale of ATM operations 

increases. 

I-1 
Provide clear, understandable 

explanations for its decisions 

It is crucial for human operators to validate and 

trust the AI's decisions, especially in complex 

sectorisation scenarios. 

I-2 

Usability of the system from the 

human and other stakeholders’ 

perspective 

It should include intuitive interfaces, ease of use, 

and effective communication of information. 

Re-1 
Compliance with legal standards 

and regulations 

Adherence to data protection laws, safety 

regulations, and ethical guidelines governing AI 

systems in public transportation and the EU AI 

Act. 

O-1 Maintainability 

Involves the ease with which the system can be 

maintained and updated. This includes the ability 

to diagnose and fix issues, update software, and 

adapt to changing operational requirements. 

O-2 Environmental Sustainability 

Addresses the system's impact on the 

environment. This includes considerations such 

as energy efficiency of the AI algorithms and the 

broader ecological footprint of the system's 

implementation and operation. 

7 Common Terms and Definitions 

Common Terms and Definitions  

Term Definition 

Air Traffic Controller 

(ATCO) 

Human operator, responsible for directing air traffic through a 

volume of airspace in a safe (i.e., maintaining separation 

standards) and efficient manner (i.e., expediting the flow of traffic, 

reducing delays, and avoiding inefficiencies in flow track miles). 

Air Navigation Service 

Provider (ANSP) 

Organization that provides the service of managing the aircraft in 

flight or in the maneuvering area of an airport and which is the 

legitimate holder of that responsibility. In this use case, NAV 

Portugal is the considered ANSP. 

Flight Information Region 

(FIR) 

A three-dimensional area in which aircraft are usually under the 

control of a single authority (ANSP). Sometimes, one or more FIRs 

have a combined upper area control, and/or FIRs are split vertically 

into lower and upper sections. 
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Airspace sector 

A three-dimensional geographical area within an FIR is under 

control by a single ATCO or multiple ATCOs (e.g., planner and 

executive controller). Commonly, a FIR is divided into multiple 

sectors. 
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UC2.ATM: FLOW & AIRSPACE MANAGEMENT ASSISTANT 

1 Description of the use case 

1.1 Name of the use case 

ID Application Domain(s) Name of Use Case 

UC2.ATM Air Traffic Management Flow & Airspace management assistant 

1.2 Version management 

Version Management 

Version No. Date Name of 

Author(s)  

Changes 

0.1 15.01.2024 Clark Borst (TUD) Initial document 

0.2 19.01.2024 Joaquim Geraldes 

(NAVP) 

Cristina Félix (NAVP) 

Hélio Sales (NAVP) 

Major revision 

0.3 03.02.2024 Ricardo Bessa Revision 

0.4 05.02.2024 Joaquim Geraldes 

(NAVP) 

Cristina Félix (NAVP) 

Hélio Sales (NAVP) 

Second major revision 

0.5 13.02.2024 Giulia Leto (TUD) 

Clark Borst (TUD) 

Revision and polishing 

0.5.1 26.02.2024 Cristina Félix Minor editorial change 

1.0 15.04.2024 Cristina Félix Final revision with new KPI’s and ATM 

workshop feedback update 

1.1 18.04.2024 Giulia Leto Scenario updates with ATM workshop 

feedback 

1.2 13.05.2024 Clark Borst Update scenario details with steps 

1.3 14.06.2024 Clark Borst Update 

1.4 19.06.2024 Cristina Félix 

Joaquim Geraldes 

Hélio Sales 

Final Revision 

1.5 08.07.2024 Ricardo Bessa Final version 

1.3 Scope and objectives of use case  

Scope and Objectives of Use Case 

Scope 

Air traffic density in European airspaces is steadily increasing. At the same time, 

pressing economic and environmental concerns force a fundamental shift towards 

time- and trajectory-based air traffic operations. Taken together, increased traffic 

loads and operational complexities may eventually drive the workload peaks of the 

tactical air traffic controller (ATCO) beyond acceptable thresholds, threatening the 

overall safety of the ATM system and hindering a smooth transition towards a 

sustainable future of ATM. 

For instance, in the Lisbon Flight Information Region (FIR), serviced by NAV 

Portugal, operational complexities arise from the activation of military areas, which 
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can significantly restrict the usage of the upper airspace for General Air Traffic 

(GAT), requiring traffic to deviate horizontally, especially when in combination with 

unexpected events (e.g. deteriorated weather conditions, flight emergencies). 

Routing of flight around military areas is proposed and implemented in pre-tactical 

phases. As of today, there is no pre-analysis tool and/or integrated decision-support 

system for assisting in, or even fully automating, the structuring of sectors with 

trajectory-efficient (e.g., flight time and fuel burn) routes and sectorisations to keep the 

workload of the tactical ATCOs within acceptable thresholds, i.e. without exceeding 

sector capacity limits. 

Objective(s) 

The system's objective is related to the flight execution phase when a military area 

is activated and the ATC has to issue deviations to avoid the activated area. The 

goal is to provide advice to ATCO about deviations with better sector capacity 

adherence and performance measured by an indicator of environmental area - 

en-route flight inefficiency of the actual trajectory (KEA). The use case will consider, 

as well, the need to review the sectorisation plan due to the military areas activation 

and required trajectory efficient deviations. 

1.4 Narrative of use case 

Narrative of Use Case 

Short description 

The Lisbon FIR includes an upper airspace area, four lower-airspace Terminal Maneuvering Areas 

(TMAs) and several military permanent and temporarily restricted areas. Because the upper Lisbon 

airspace is a so-called Free Route Airspace (FRA), flights can take any preferred route from entry to exit 

points, but preferably the most efficient (short) route.  

The activation/deactivation of military airspace in the Lisbon FRA can induce deviations from the flight 

plan routes. In this sense, to optimize the lateral deviation of the flights due to avoidance of an eventual 

temporary military activated area, the AI assistant will analyze and suggest a decision in sectorisation 

and routing of the main flows in Lisbon FIR (e.g., flight from London to Lisbon via either North or East 

entry coordination points of the Lisbon FIR). 

Human operators, more specifically the ATC and FMP supervisors, will be supported by an AI -assistant in 

how to best configure airspace sectors and optimize the routes for traffic flows at the enroute sectors of the 

Lisbon FIR in order to balance achievement of a better KEA (Key performance Environment indicator based 

on Actual trajectory, measuring the average en-route additional distance with respect to the great circle 

distance) and adherence to sector capacity limitations. The AI assistant will also act in a bidirectional way 

by allowing the human operator to nudge the AI-generated recommendations in more 

favorable/acceptable directions. The airspace sectorisation and flow structures, as devised by the AI and 

nudged by the operators in the pre-tactical phase, will be used by Tactical Air Traffic Controllers to manage 

traffic around the military activated areas. 

Complete description 

Description of the current Lisbon FIR situation: The Lisbon FIR includes four TMA’s (marked in yellow in 

the figure below). Within the Lisbon FIR, the airspace is classified “C”, “D”, and “G”, with the airspace 

classification “D” being associated with military restricted areas. Under the Flexible Use o f space (FUA) 

concept, the military-restricted areas may be released for management by the ANSP in order to allow for 

General Air Traffic (GAT) operations. When the military areas are released to the ANSP, the airspace 

classification of the delegated areas changes from “D” to “C”.  
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Above FL 245, the concept of Free Route Airspace in the Lisbon FIR (FRAL) is implemented since May 2009. 

Under the FRAL concept, all upper airspace of the FIR is available by default for civil aircraft planning 

purposes. Within the upper airspace, the activation/deactivation of military areas (highlighted with grey 

contours in the figure below) and its impact on civil planned flights is handled in the pre-tactical time horizon, 

as the activation of military areas can be planned from several weeks to one day in advance. Transitions 

from the upper Lisbon airspace to the TMAs in the lower Lisbon airspaces occur at fixed coordination 

points. 

Currently, en-route flight inefficiency of the flown trajectories is monitored and targeted through a Horizontal 

En-route Flight Efficiency KPI, the Key performance Environment indicator based on Actual trajectory  (KEA). 

Routings deviating from those in nominal conditions, caused by military activations, changes in weather 

conditions or deviating airline decisions may lead to worse KEA values. As the Lisbon FIR above FL 245 is 

free of pre-defined routes, flexibility for routing outside of the restricted areas is available to account for major 
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deviations of the KEA. However, re-routing too many flights through the same airspace may exceed the sector 

capacity limit, requiring vertical and/or horizontal splits (i.e., sectorisations) to balance ATCO workload.  

 

Therefore, given certain environmental and operational conditions, FRA structures and routings might exist 

that balance flexibility against predictability targets in optimized ways. Here, “optimized” is defined in terms 

of flight trajectory efficiency (e.g., flight time and fuel burn) and reduced operational complexity (e.g., crossing 

and merging points) that impact ATCO workload, leading in the worst case to exceed the sector capacity 

limits. A hybrid AI system, based on supervised and unsupervised AI methods, could analyse and provide 

routing and airspace configuration solutions for various operational scenarios in which the Lisbon FRA is 

restricted (due to activated military areas, weather conditions, etc.), predicting the KEA penalty and 

suggesting new routings and sectorisations that minimize the KEA while respecting sector capacity limits. 

Training scenarios can be selected from historical data and, for highly perturbed scenarios, can be based on 

synthetic data generation.  

 

System description and role of the human operator:  The airspace design for capacity and flow 

management for operational scenarios in which the Lisbon FRA is restricted is performed in a highly 

automated manner by an AI-based system. This system automatically observes data from all relevant 

ATM platforms and makes predictions on how to organize the airspace in terms of routings and 

sectorisation, and implements results as recommendations to the human operator (e.g., ATC and FMP 

supervisors).  

The AI system can be considered as a new tool that is supervised and evaluated by a human expert. 

The AI system communicates its decisions on an auxiliary display that, for example, visualizes airspace 

configurations on a map-like interface.  

The role of the human operator (here, the ATC and FMP supervisors) is to evaluate the AI -based 

recommendations by requesting additional information and explanations, accept or reject advisories, and 

nudge AI decisions in a different direction by manual interventions. All decisions and interactions will be 

logged, allowing the AI system to continuously learn from human preferences.   

 

Steps involved in the use case. The following steps are performed in the ATM Flow & Airspace management 

use case: 

 

5. Definition and identification of the critical system parameters.  Here, the relevant ATM system 

and contextual data needed for the airspace structuring (i.e., routing and sectorisation) task are 

gathered from (various) digital ATM platforms and integrated into a coherent, time-stamped “feature 

space” that drives airspace structuring predictions. Training and validation of the AI system are based 

on historical and synthetic/artificial data.  

6. Airspace structuring implementation: Based on predicted traffic, airspace military activations, 

environment, and staffing conditions, a minimum KEA routing plan and consequential sectorisation 

plan are predicted. The solution is presented to the human supervisor as a recommendation on an 

auxiliary interface. When the AI system acts at a lower level of automation, the human supervisor  

manually implements the routes and sector plans. At higher levels of automation, the AI 

recommendations are executed based on “management by consent” (= AI implements only when the 

human accepts) or “management by exception” (= AI implements unless the human vetoes). At the 

highest level of automation, the AI system is automatically implemented, and humans can only revise 

the system's decisions afterward. 

7. Triggering airspace structuring revisions: (Significant) changes, namely on military airspace 

activations & deactivations, as well as traffic loads, environment conditions, and staff availability, can 

all trigger routing and sectorisation revisions. Parameters and thresholds warranting revisions will 

need to be defined and should be configurable for operational scenario generation.  

8. Tactical deviations implementation: Based on the operational conditions that lead to steps 2&3 

above, the Tactical Air Traffic Controller will reroute the traffic around the military-activated areas to 

balance the better KEA and sector capacity adherence. 

9. Human review and adjustment: Depending on the level of automation set for the AI system, 

the role of the human operator ranges from manually implementing a routing and sectorisation 

plan to revising AI-implemented plans (see step 2). Humans can consult additional information 
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and explanations underpinning AI’s decisions on demand, which is expected to foster trust in 

and acceptance of the AI system. As all human interactions will be recorded, data will become 

available for the type of explanation used most frequently and how certain explanations impact 

the acceptance of AI decisions. Such data can be used to improve the combined human-AI team 

performance. 

Stakeholders 

 

ATC supervisor 

The air traffic control supervisor, who is located in the operational control room, is responsible for the 

airspace-structuring task. 

 

FMP supervisor 

Local Flow Management Position supervisor is responsible for sector capacity management.  

 

ANSPs responsible for the FIR 

e.g., NAV Portugal, the Portuguese Air Navigation Service Provider (ANSP), responsible for the Santa Maria 

Flight Information Region (FIR) and the Lisbon FIR.  

 

Other ANSPs 

Neighboring ANSPs are connected to the NAV FIRs (e.g., ONDA (Morocco) and ENAIRE (Spain)).  

 

Tactical Air Traffic Controller 

A single human ATCO is responsible for maintaining safe, efficient, and expeditious flows of air traffic within 

a single airspace sector. 

 

National Air Force 

Example: the aerial military force of Portugal (Força Aérea Portuguesa (FAP)), responsible for the Air Search 

and Rescue Service, air policing service and Flight Information Service (FIS).  

 

Airlines and pilots 

Airlines for adhering to planned operations; flight crew responsible for the safe and efficient execution of a 

planned flight. 

 

Society and the general public 

Operational efficiency and safety pay dividends in terms of fuel burn, CO2 emissions, and punctuality.  

Stakeholders’ assets, values  

 

 

ATC or FMP supervisor 

• Available personnel: low-quality AI predictions may yield infeasible airspace structuring solutions 

(e.g., insufficient ATC personnel to handle all sectors). 

• Tactical activations with short notice may affect the scenery (e.g., route efficiency decreases due to 

flight deviations, and the capacity of the sectors dedicated to GAT exceeded).  

 

ANSPs (incl. NAV and neighboring ANSPs)   

• Reputation: the ability to maintain efficient airspace usage and ability to coordinate traffic flows with 

neighboring FIRs. 

• Safety: AI system recommendations should avoid creating traffic hotspots.  

 

Tactical Air Traffic Controller (ATCO) 

• (Mental) workload and Situation awareness: AI-recommended airspace structuring (routings of flights 

and sectorisation) should balance traffic loads in ways that adhere to acceptable workload limits and 

enable ATCOs to maintain situation awareness. 

 

Airlines and pilots 
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• Reputation: adhering to planned flights while reducing inefficiencies in flown track miles, possibly 

leading to delays. 

System’s threats and vulnerabilities 

 

Unexpected events: Air traffic operations can be affected by events related to unexpected weather (e.g., 

local adverse weather cells, off-nominal wind conditions), flight emergencies (e.g., aircraft equipment failure), 

and unscheduled ATC personnel shortages (e.g., due to sickness). The scale of such events could lead to 

invalid or no solutions at all, for example, in the event of a volcano eruption or hurricanes that require closing 

off an entire airspace. 

 

Quality of data exchange infrastructure: To ensure optimal decision-making, access to high-quality, real-

time data will be required. Currently, information is scattered over various ATM systems, requiring a 

sufficiently robust IT infrastructure that can distribute data over the network to and from various Air Traffic 

Service (ATS) units. Delayed and uncertain information could negatively impact the quality of decisions.   

1.5 Key performance indicators (KPI) 

Name Description 
Reference to the mentioned use case 

objectives 

Acceptance 

score 

Measure of acceptance degree of the 

generated AI solution for human 

operators 

Reflects the acceptance choice of the 

AI’s system decision. 

(0% - 100%).  

Measured directly from 

yes/no/revision input, translated 

into % across the operator’s multiple 

interactions with AI-generated 

solutions. 

Agreement 

score 

How much the supervisor agrees with the 

AI-generated sectorisation.  

Note: agreement and acceptance are not 

the same. One can accept a solution but 

not necessarily agree with it. A good 

system fosters a high-level agreement 

This reflects the degree of agreement 

on the AI system proposal. 

(Likert, 7-points scale) 

Trust in AI 

solutions 

score 

How much of the operator's confidence in 

the AI-generated solution, with and 

without the need for additional 

explanations. 

This reflects trust in the AI system’s 

decision.  

(Likert, 7-points scale) 

Decision 

Support 

satisfaction 

System effectiveness in supporting the 

efficient decision-making by airspace 

managers 

Reflects the effectiveness of the AI 

system. 

(Likert, 7-points scale) 

Efficiency 

score 

How many times an AI-generated solution 

was revised. A good system would 

minimize the number of human 

interventions. 

Reflects the efficiency of the 

combined human-AI team 

performance.  

(0% - 100%).  

Measured directly from user input 

(was the solution modified? Yes/no), 

translated into % across the 

operator's multiple interactions with 

AI-generated solutions 

Significance 

of human 

revisions 

The extent of human revisions compared 

to the AI decision. Here, small, localized 

revisions (e.g., merging two small 

adjacent sectors in the northeast corner 

of the FIR) would be rated differently 

from larger or multiple revisions across 

various areas in the FIR.  

Reflects the AI system performance. 

(LOW, MED, HIGH interaction %). 

Measured directly from user input (of 

the modified solutions, how much 

interaction was measured? LOW 

number and extent of changes, 

MEDIUM number, and extent of 
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changes HIGH number and extent of 

changes), translated into % across 

the operator's multiple interactions 

with AI-generated solutions 

System 

Reliability 

System trustworthiness - operation as 

expected under several conditions 

without major failures. 

Reflects the efficiency of the 

combined human-AI team 

performance.  

(0%-100%). 

Measured directly from how many 

times the AI-generated solutions are 

sound or lead to failures 

AI prediction 

robustness 

How accurately and robustly does the AI 

system predict a certain sectorisation 

over a certain time horizon. Does re-

evaluation of the sector structure in a 

shorter time horizon lead to different 

solutions? It is undesirable if small 

variations in capacity lead to significant 

differences in the sector 

structures/routings. 

Reflects the efficiency of the 

combined human-AI team 

performance.  

Measured directly from the AI 

generated solutions. How big a 

variation in capacity has to be to 

cause the AI to revise its previous 

solutions. 

Prompt 

demand rate 

Assess how many times the ATCO 

prompts additional explanations from the 

AI generated solutions. 

Reflects the AI system performance. 

(LOW, MED, HIGH interaction %) 

Measured directly from user input 

(how much interaction with 

explanations occurred and how the 

generated scenario is rated using the 

'dynamic density index', measuring 

complexity), translated into % across 

the operator's multiple interactions 

with AI-generated solutions 

AI 

co-learning 

capability 

Does the ATCO feel that by the end of 

the trial runs, the AI has learned his 

preferences? 

Links to the desired output of the AI 

system. 

(Likert, 7-points scale). 

Human 

Response 

Time 

Needed response time to react to AI 

advisory/information. 

(LOW, MED, HIGH response time %). 

Measured directly from user input 

(dismiss a window when they feel 

satisfied after evaluating a scenario, 

LOW less than 5 min, MEDIUM 5-10 

min, HIGH more than 15 minutes), 

translated into % across the 

operator's multiple interactions with 

AI-generated solutions. 

Reduction in 

Delays 

Percentual reduction of flight delays due 

to AI implementation in airspace and air 

traffic management. 

0% - 100% 

Workload 

perception 

Assess ATCOs perception of the system 

impact on their workload (either positive 

or negative). 

Likert, 7-points scale1  

(Huge Increase in workload) to 7 

(Huge decrease of workload) 

1.6 Features of use case 

Task(s) Planning, prediction, optimization, interactivity, recommendation.  

Method(s) Supervised Learning (e.g., ensemble decision trees) and Reinforcement learning. 

Platform BlueSky digital environment. 

https://github.com/TUDelft-CNS-ATM/bluesky
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1.7 Standardization opportunities and requirements 

Classification Information 

Relation to existing standards 

ISO/IEC 23894:2023, Information technology — Artificial intelligence — Guidance on risk 

management. Autonomous management and optimization of sectorisation in pre-tactical ATM 

operations are high-stake tasks, and therefore, risk management specifically related to AI is 

fundamental.  

ISO/IEC 38507:2022, Information technology — Governance of IT — Governance implications of 

the use of artificial intelligence by organizations. Autonomous AI requires an analysis of 

governance implications and also a redefinition of the organization structure.  

ISO/IEC 24029-2:2023, Artificial intelligence (AI) — Assessment of the robustness of neural 

networks — Part 2: Methodology for using formal methods. Since artificial neural networks can be 

a component of the autonomous AI system, formal methods to assess the robustness proper ties 

of neural networks are fundamental to certify and monitor autonomous systems.  

ICAO DOC 4444 – Standards and Recommended Practices in Air Traffic Management 

ERNIP Part 3 – EUROCONTROL Procedures for Airspace Management, Airspace Management 

Handbook for the Application of the Concept of the Flexible Use of Airspace. 

https://www.sesarju.eu/masterplan2020 - European ATM Master Plan 

Standardization requirements 

Establish a standard set of KPIs for measuring the performance of AI -based airspace structuring 

systems, and how the AI performance compares to heuristic methods in prediction and planning 

systems.  

1.8 Societal concerns 

Societal concerns 

Description 

Increased air traffic density in Europe: The challenge of maintaining safe and efficient air traffic 

management under increased traffic loads while adhering to the workload capacity limits of tactical 

ATCOs. 

Privacy and data protection: The use of AI in ATM airspace structuring (routing and sectorisation) 

involves the collection and analysis of large volumes of data, including potentially sensitive 

information. There is a concern about how data is stored, processed, and protected, espec ially in 

compliance with data protection regulations like GDPR. 

Transparency and accountability: There is a societal demand for transparency in how AI 

systems make decisions, especially in high-stake transportation systems like ATM. The public 

might be concerned about the lack of understanding of AI decision-making processes and the 

accountability mechanisms in place in case of failures or errors. 

Employment and skill shift: The full automation of the airspace structuring (routing and 

sectorisation) tasks might lead to concerns about job displacement and the need for reskilling of 

ATC staff. While AI can optimize operations, it also changes the nature of work, requiring a sh ift 

in skills for human operators who now need to oversee and interact with advanced AI systems.  

Public trust and acceptance: For the successful implementation of AI in air transportation, 

gaining and maintaining public trust is crucial. There may be apprehensions and resistance from 

the public regarding the shift to AI-driven systems, especially among those accustomed to 

traditional methods. 

Sustainable Development Goals (SGD) to be achieved 

SGD9. Industry, innovation and infrastructure / SGD11. Sustainable cities and communities / 

SGD13. Climate action 

2 Environment characteristics 

https://www.sesarju.eu/masterplan2020
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Data characteristics 

Observation 

space 

Partially observable. 

Data update is near real-time with a certain look-ahead time (minutes up to hours). 

Domain: defined on a continuous space. 

Size: > 2000 flights per day, with > 10 observable states per flight, > 8 sectors with > 

20 coordination points (entry and exit points) per sector  

Noise: The observation can be noisy due to unsynchronized update frequencies and 

data quality of various data platforms (e.g., weather updates).  

Action space 

Mixed action space: sectorisation decisions are discrete (e.g., ‘split’ and ‘merge’), 

but sector geometry can vary on a continuous space depending on the algorithmic 

approach. Routing decisions are continuously characterized by waypoint locations. 

The action space of a human ATCO (for routing advisories) is three-dimensional 

(altitude, heading, speed). 

Size:  The action space of the human ATC staff manager is limited to the number of 

sectors to choose from and depends on ATCo staff availability, the number of flights, 

and the weather conditions (determining geographic restrictions). The action space 

of the human ATCO is three-dimensional (altitude, heading, and speed) and depends 

on the number of flights in the sector. 

Time horizon: sectorisation and routing actions range typically from a few minutes 

to a couple of hours (= pre-tactical operations) 

Type of task 

Human staff managers and AI assistants act in a sequential  environment: the 

previous decisions can affect all future decisions. The next action of these agents 

depends on what action they have taken previously and what action they are 

supposed to take in the future. 

Sources of 

uncertainty 

Stochastic (weather forecasts, variability in traffic load, unpredicted ATCo staff 

shortage, variability in opening and closing MIL areas) 

Environment 

model 

availability 

Yes (aircraft performance models, ISA standard atmosphere) 

Human-AI 

interaction 

Co-learning between the human and AI: AI assistant proposes a sectorization and 

routing plan, the human staff manager and planner ATCO evaluates the plan, and 

human agents accept or revise the plan (= feedback to AI assistant).  

3 Technical details 

3.1 Actors 

Actor Name 

 

Actor Description  

FMP supervisor 

The human FMP supervisor is responsible for implementing a sectorisation plan 

and routing structure on a pre-tactical time scale. The FMP supervisor needs to 

evaluate the outputs of an AI assistant that aims to support the supervisor in 

generating sectorisation and routing suggestions.   

AI assistant 

The AI assistant provides sectorisation plan and routing suggestions to the FMP 

supervisor. It takes predicted information about the environment from various 

systems (e.g., weather forecasts from METEO services, traffic loads from Central 

Flow Management Unit, ATCo staff schedule, etc.) and historical data. In the 

training phase, it can act on the environment to evaluate its recommendations. In 

the evaluation/testing phase, the actions on the environment should be performed 

by the human only.   



 

AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

– 259 – 

Environment 

The FMP supervisor interacts with the BlueSky digital environment and with the 

AI assistant through a secondary interface. The AI assistant can also portray its 

sectorisation and routing recommendations directly in the BlueSky environment 

(top-down Earth map). 



 

AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

   

 

4 Step-by-step analysis of use case 

4.1 Overview of scenarios 

Scenario conditions 

No. Scenario name Scenario description Triggering event Pre-condition Post-condition 

1 

Nominal 

operational 

conditions 

The condition is used as a 

baseline, allowing the comparison 

of minimum KEA routings devised 

by the AI system under nominal 

operational conditions with 

routings devised in restricted 

airspace availability conditions. 

Traffic loads over a typical day (24 

hours) will be used as inputs. 

 

Nominal traffic load 

over 24 hours, 

including periods of 

inbound and outbound 

of Lisbon FIR.    

Nominal ATCO staffing 

capacity. 

Normal weather 

conditions. 

The system proposes and/or executes 

efficient flight routes and sectorisation 

plans and presents results on an 

auxiliary interface for the human 

supervisor to evaluate. These results 

are then used as a baseline for 

comparison with scenarios with 

restricted airspace availability. 

2 

Military 

restrictions 

 

This scenario deals with 

decreased airspace availability 

due to the activation of one or two 

military areas. Traffic should be 

routed around the military-

restricted airspace while 

minimizing the KEA and adhering 

to sector capacity limits, which 

may require off-standard 

sectorisation. 

Activation of one or 

two military areas.   

Nominal traffic load 

over 24 hours. Nominal 

ATCO staffing 

capacity. 

Normal weather 

conditions. 

The system proposes and/or executes 

efficient flight routes and off-standard 

sectorisation and presents results on an 

auxiliary interface for the human 

supervisor to evaluate. 

3 

Environmental 

disturbances 

 

This scenario deals with highly 

decreased airspace availability 

due to challenging weather 

conditions, reducing the 

availability of airspace on a short 

time horizon. 

Challenging weather 

conditions. 

Nominal traffic load 

over 24 hours. Nominal 

ATCO staffing 

capacity. No active 

military areas. 

 

The system proposes and/or executes 

efficient flight routes and off-standard 

sectorisation and presents results on an 

auxiliary interface for the human 

supervisor to evaluate. 

4 
Large 

perturbation   

This scenario deals with 

decreased airspace availability 

Activation of more than 

two military areas in 

Nominal ATCO staffing 

capacity. 

The system proposes and/or executes 

efficient flight routes and off-standard 
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due to the activation of more than 

two military areas, in conjunction 

with challenging weather 

conditions, further reducing on a 

short time horizon the availability 

of the airspace. This case 

simulates an edge-case situation. 

conjunction with 

challenging weather 

conditions. 

sectorisation and presents results on an 

auxiliary interface for the human 

supervisor to evaluate. 

4.2 Steps for all scenarios 

For each scenario the number of steps are the same and in-line with current practices in capacity flow & management and sectorisation on medium- 

to long-term time scales. 

 

Step 

no. 

Event Name of 

process/ 

activity 

Description of process/ activity Service Information producer 

(actor) 

Information 

receiver 

(actor) 

Information 

Exchanged 

1 Start The FMP 

supervisor 

prepares his/her 

shift 

FMP supervisor selects a maximum time horizon for a sector 

plan and enters that information into the system. 

The shift is prepared taking into account the forecasted traffic, 

the airspace restrictions, and the available ATCOs 

FMP supervisor 

 

AI assistant 

 

SET 

 

2 Initialise 

plan 

AI assistant 

generates an 

initial plan 

The FMP supervisor requests an initial sectorisation and 

routing structure from the AI assistant. This includes 

portraying a horizontal and vertical sector layout on a map 

and/or secondary interface, a network of KEA efficient 

routings, a timeline showing ATCo staff and traffic 

occupancy per sector, and a time slider enabling the FMP 

supervisor to preview changes in sectorisation and routings 

on a map. The predicted state of the system in terms of 

traffic movements and weather condition (e.g., wind) is also 

displayed and responsive to the time slider.  

AI assistant FMP 

supervisor 

SRPLAN 
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3 Plan 

evaluation 

The FMP 

supervisor 

evaluates the 

plan 

The AI assistant may propose several alternative sector plans 

and routing structures, each with a different probability values 

(based on historical data), KEA efficiency scores, and 

robustness scores depending on ATCO and traffic capacity, 

fluctuations in predicted traffic load, and uncertainty in 

weather forecasts. Using the time slider, the FMP supervisor 

can evaluate the probability, efficiency, and robustness 

scores for different times within the maximum look-ahead time 

horizon. 

AI assistant FMP 

supervisor 

STATE 

4 Human 

interacts 

The FMP 

supervisor 

interacts with 

the plan 

The FMP supervisor interacts with the suggested sector plan 

and routings in one of the following ways: 1) accept the top-

rated AI suggestion and implement it; 2) nudge the AI 

suggestions by making small changes (e.g., one sector 

merge or split and adjust one or two traffic streams); 3) revise 

large sections of the plan (e.g., revise multiple sectorisation 

events across various time horizons and revise several traffic 

streams). 

Staff manager AI assistant 

 

DEC 

5 Re-

schedule 

Trigger an alert 

to re-schedule 

The AI assistant monitors changes in predicted system and 

environmental states. When updated information deviates 

from the information and data that was used for the 

implemented sector plan and routing structure, the AI 

assistant issues an alert, triggering the FMP supervisor to go 

back to Step 2. 

AI assistant FMP 

supervisor 

AL 
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5 Information exchanged 

Information 

exchanged 

(ID) 

Name of information Description of information exchanged 

SET 
Inputs and settings for AI 

assistant 

FMP supervisor sets maximum time horizon for the AI 

assistant 

SRPLAN Sector plan AI assistant suggestions for sectorization and routings. 

STATE Predicted system state 

Predicted system state over a certain time period, including 

traffic load, weather conditions, ATCo capacity, sector and 

routing topology, probability, efficiency, and robustness 

scores. 

DEC 
Human decision / interaction 

with the AI assistant operator 

FMP supervisor’s choice in terms of accepting, nudging, 

and revising. 

AL AI assistant alert 

AI assistant issuing an alert, signaling to the FMP 

supervisor that data used for predictions have 

changed significantly, warranting re-scheduling.  

6 Requirements 

Requirements  

Categories 

ID 

Category name for requirements Category description 

Ro Robustness It encompasses both its technical robustness 

(the ability of a system to maintain its level of 

performance under a variety of circumstances) 

as well as its robustness from a social 

perspective (ensuring that the AI system duly 

takes into account the context and environment 

in which the system operates). This is crucial to 

ensure that, even with good intentions, no harm 

can occur unintentionally.  

Source: EU-U.S. Terminology and Taxonomy for 

Artificial Intelligence. First Edition 

E Efficiency The ability of an AI system to achieve its goals 

or perform its tasks with optimal use of 

resources, including time, computational power, 

and data. 

I Interpretability Make the behavior and predictions of AI systems 

understandable to humans, i.e., the degree to 

which a human can understand the cause of a 

decision.  

Source: Molnar, Christoph. Interpretable 

machine learning. Lulu. com, 2020. 

Re Regulatory and legal The AI system's capacity to meet its objectives 

while complying with relevant laws, regulations, 

and ethical standards. 

O Other Other non-function requirements related to 

environmental concerns and maintenance 

Requirement 

R-ID 

 

Requirement name Requirement description 

Ro-1 
System resilience to unexpected 

events  

The AI system should work correctly under a 

variety of conditions and withstand operational 
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disruptions. This includes resilience to 

unexpected events like adverse weather and 

sudden changes in the ATCO staff availability. 

Ro-2 Cyber and data security 

Focuses on protecting the system against 

unauthorized access, cyber threats, and data 

breaches. This ensures the integrity and 

confidentiality of sensitive operational data and 

safeguards the system from malicious attacks. 

Ro-3 
The system’s reliable operation 

and decisions 

Shall show the capacity to perform its required 

functions under stated conditions for a specified 

period. This includes maintaining consistent 

performance and minimizing system failures or 

errors. 

E-1 
Capability to optimize resources 

and operations 

The system shall maximize airspace and ATCO 

staffing utilization. 

E-2 Scalability 

Concerns the system's ability to handle growth in 

traffic loads, such as increased air traffic or 

airspace expansion, without performance 

degradation. This ensures the system remains 

effective as the scale of ATM operations 

increases. 

I-1 
Provide clear, understandable 

explanations for its decisions 

It is crucial for human operators to validate and 

trust the AI's decisions, especially in restricted 

airspace conditions with complex sectorisation 

scenarios. 

I-2 

Usability of the system from the 

human and other stakeholders 

perspective 

It should include intuitive interfaces, ease of use, 

and effective communication of information. 

Re-1 
Compliance with legal standards 

and regulations 

Adherence to data protection laws, safety 

regulations, and ethical guidelines governing AI 

systems in public transportation and the EU AI 

Act. 

O-1 Maintainability 

Involves the ease with which the system can be 

maintained and updated. This includes the ability 

to diagnose and fix issues, update software, and 

adapt to changing operational requirements. 

O-2 Environmental Sustainability 

Addresses the system's impact on the 

environment. This includes considerations such 

as energy efficiency of the AI algorithms and the 

broader ecological footprint of the system's 

implementation and operation. 

7 Common Terms and Definitions 

Common Terms and Definitions 

Term Definition 

Air Traffic Controller 

(ATCO) 

Human operator is responsible for directing air traffic through a 

volume of airspace in a safe (i.e., maintaining separation standards) 

and efficient manner (i.e., expediting the flow of traffic, reducing 

delays, and avoiding inefficiencies in flow track miles).  

Air Navigation Service 

Provider (ANSP) 

An organization that provides the service of managing the aircraft in 

flight or in the maneuvering area of an airport and which is the 

legitimate holder of that responsibility. In this use case, NAV 

Portugal is the considered ANSP. 

Flight Information Region 

(FIR) 

A three-dimensional area in which aircraft are usually under the 

control of a single authority (ANSP). Sometimes, one or more FIRs 
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have a combined upper area control, and/or FIRs are vertically split 

into lower and upper sections. 

Airspace sector A three-dimensional geographical area within an FIR is under 

control by a single ATCO or multiple ATCOs (e.g., planner and 

executive controller). A FIR is commonly divided into multiple 

sectors. 

General Air Traffic (GAT) All aviation traffic conducted in adherence to the International Civil 

Aviation Organisation (ICAO) regulations.  

Flow Management 

Position (FMP) 

ANSP Unit responsible for sector capacity and traffic flow 

management 
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ANNEX 3 – RELEVANT ALTAI REQUIREMENTS 

POWER GRID 

REQUIREMENT #1 Human Agency and Oversight 

Human Agency and Autonomy 

The end-users are fully aware that the decision comes from an AI-based system. The AI assistant is 

designed to provide recommendations to human operators in managing the power grid, which, in case 

of failure, might endanger the safety of property and people, lead to electricity outages, and affect 

humans and the economy. However, human operators remain in charge of implementing actions. 

The assistant may create addictive behavior in humans, but in normal conditions (i.e., without an 

adversarial attack to the output), it will not manipulate user behavior. However, with time, humans 

may start to trust more in AI, and there is the risk of over-reliance. Technically, this issue is solved by 

the requirement of alarms from the AI assistant when it cannot provide a recommendation. These 

alarms should be designed carefully, as the AI can generate confusion via multiple actions and too 

many alarms. 

Human Oversight 

The AI system provides recommendations that the human can accept or adapt at will. The human can 

override the AI system when necessary. Humans already know the type of output (i.e., the same as 

traditional tools in power system control rooms). Still, operators should be trained to understand the 

rationale behind the AI system (e.g., understanding how RL works) and its limitations. The alarm is 

issued when the AI system cannot generate a recommendation that effectively overcomes the 

problem, e.g., lack of knowledge, or high uncertainty. Moreover, it can leverage simulation (with a 

physically-based tool – power flow) to understand the impact of each recommendation in the system. 

 

REQUIREMENT #2 Technical Robustness and Safety 

Resilience to Attack and Security 

 The system can endanger property safety and people or outages in the electrical grid. This can occur 

due to different reasons: 

• Cyberattacks to input data, AI model output, and AI model 

• Noise and missing input data 

• High epistemic (model) uncertainty due to a lack of training data. 

The security requirements of the UCs cover the potential sources and forms of cyber-attacks. The 

metrics to monitor the robustness of the AI system during training and operation should be defined 

for development. Red team/pen test, measures to ensure the integrity, robustness, and overall 

security of the AI system against potential attacks over its lifecycle are important for the final product 

but are out-of-scope for this project. 
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General Safety 

The following threats were identified during the analysis of UCs: 

• The state vector (i.e., characterization of the operating context) that might have missing data, 

gross errors, or even adversarial attacks, which may lead to wrong decisions and could be 

classified as an environmental threat. The risk of possible malicious attacks should be 

evaluated. Misuse of the AI system can lead to wrong decisions from the human operator. 

• Exposure to weather events. 

Changes in the learned (pre-trained) AI system performed by supervised and reinforcement learning 

algorithms should be auditable and controlled by humans through automatic mechanisms to detect 

data and model shifts. 

Accuracy 

In this concept of AI assistant, humans remain in control. The main consequence of low-level accuracy 

could be distrust from humans in AI and algorithmic aversion.  Human control prevents critical 

consequences that could occur if low-accuracy AI actions were implemented automatically. 

Transfer learning and adaptability of AI are important properties for deployment in real-world 

operating conditions. The second UC covers cases when the system operates in a different 

environment than the one used for training the AI. 

Continuous monitoring of the AI system is fundamental. It should be done at different levels: 

• Measure performance continuously (online) with metrics such as reward score (objective 

function), human operator acceptance rate, alarms utility function, and KPIs defined in the 

UC. This performance can be quantified both during training and operational phases (e.g., 

identify changes in the environment compared to the training phase). 

• Stress tests will be conducted to assess the robustness of the AI system, considering 

perturbation in the state vector (input data). These tests may also consider perturbations in 

the model (e.g., weights) and output. 

Reliability, Fall-back Plans and Reproducibility 

The reliability of the AI system is defined not only by its technical performance but also by its credibility 

with the human operator. An AI assistant with low reliability can recommend decisions that may not 

solve contingency problems and/or increase the risk of cascading effects. However, it will mainly lead 

to low trust from human operators and not direct adversarial or damaging consequences. In case of 

predictions with low confidence, the AI system generates alarms that inform the human operator. 

Reproducibility is important when it is necessary to justify certain decisions to the grid stakeholders 

(e.g., Energy regulator, curtailed renewable energy produces), which means that the same decisions 

should be obtained using the original data, AI model and code.  

Governance procedures should be defined to re-train (or conduct maintenance over) the AI assistant 

in case of continuous poor performance. 

Verification and validation methods are required and will be proposed in WP4.  
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REQUIREMENT #3 Privacy and Data Governance 

Privacy 

Privacy concerns are not an issue in the UCs. 

Data Governance 

The project's data management plan covers the measures required according to the GDPR; however, 

no personal data is being used during training. 

The AI system may leverage historical records of actions taken by human operators (i.e., imitation 

learning), which is fully anonymized since the operator's identification is not required. Yet, the action's 

timestamp is required, and when cross-referenced with a table of operator shifts, it may be possible 

to identify the operator and corresponding actions (and performance). 

 

REQUIREMENT #4 Transparency 

Traceability 

In power grids, traceability is fundamental, and transmission system operators keep historical records 

of all main events. Thus, it is possible to replay scenarios where AI was used. This means also storing 

the AI model (e.g., artificial neural networks weights, hyperparameters) together with the input and 

output data. 

Explainability 

Explainability is an important target of the projects and the developments. However, in this stage, 

most approaches rely on neural networks, where only feature importance (from sensitivity analysis or 

Shapley values) can be derived. 

Communication 

In this case, the human operator knows that an AI system is giving recommendations. 

An alarm system for the AI system is foreseen – this is related to the concept of meta-awareness of 

AI-assistants that is discussed in the conceptual framework (see section 3.2.2.2.2). The goal is to 

inform the user when the AI system may fail to solve the technical problem. This alarm can be 

generated with information about the operating context (using the input data/state vector as raw 

information) and the model uncertainty (epistemic uncertainty). Corresponding situations shall be 

evaluated in the second UC (Sim2Real). 

The AI4RE4ALNET digital environments can be used within a training programme for operators on how 

to use and interact with the AI system. 

 

REQUIREMENT #5 Diversity, Non-discrimination and Fairness 

Avoidance of Unfair Bias 
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It is prohibited for the system to favor specific producers of energy unfairly. A level playing field in the 

energy market, as well as fair competition, must be provisioned. Measures must be implemented to 

ensure these fairness constraints are observed. 

In the discussion, the two following issues regarding this proposition emerged: 

1. Occurring bias may originate from technical or physical limitations of electrical grid operations 

and hence may (in part or wholly) not be avoidable. 

2. Requiring the AI system to adhere to fairness standards that are not required from existing 

alternative techniques may put it at a disadvantage, especially if those originate from the 

source of the previous issue. 

In these UCs, bias and discrimination can be directed towards certain grid users (generators, flexible 

loads) that are redispatched (or curtailed) more frequently than others. Using the physical equations 

of the power grid, it is possible to compare the decisions made by the AI system and the impact that 

other grid users would have in solving the technical problem. For instance, ex-post, it is possible to 

run an optimal power flow (OPF) with the redispatch costs and compare its solution with the AI 

system. Having a least-cost solution is the primary goal.   

Accessibility and Universal Design 

The power grid operation is concerned with providing electricity to its customers. This objective is not 

influenced by the variety of preferences and abilities in society. 

Stakeholder Participation 

Stakeholders have been consulted during UC design and can be involved in the AI system design. 

Competitions with the digital environments will also help understand the AI system's benefits, 

limitations, and risks and extract lessons for further improvement. 

  

REQUIREMENT #6 Societal and Environmental Well-being 

Environmental Well-being 

The AI system will prioritize carbon-free actions, e.g., changing network topology to avoid renewable 

energy curtailment. A KPI for carbon intensity is considered in the UC. The AI system will also increase 

resilience to extreme weather events and reduce the cost of blackouts. 

Impact on Work and Skills 

The AI system will augment human operator analytical capabilities and decision-making tasks. It is not 

intended to replace the human. 

Human operators in control rooms already use supporting tools (mainly classical tools) to develop and 

validate their decisions. However, a higher knowledge of the fundamentals behind the AI system can 

help human operators understand the decision-support process, and the proper use of data-driven 

tools requires training programs and risk assessment methodologies for humans and organizations. 

Impact on Society at large or Democracy 

Not relevant for these UCs. 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

270 

 

 

REQUIREMENT #7 Accountability 

Auditability 

A third-party audit is unlikely during the development phase. During the operational phase, an audit 

might occur in case of outages, blackouts, or cyber-attacks on the input data. 

Saving the AI model (weights, hyperparameters, structure) is essential for the auditability and 

traceability of the recommendation of the AI assistant. 

AI Act will likely demand an audit (high-risk system). If the audit is to be repeated often, it may become 

necessary to develop an automated procedure. 

Risk Management 

A process for third parties to report potential vulnerabilities, risks, or biases in the AI system is 

fundamental, particularly the creation of a database similar to AVID. A recent initiative in this direction 

is the AI Risk Repository from MIT. However, the vulnerabilities and risks of other systems (e.g., 

SCADA) should be evaluated together due to interdependencies with the AI system (e.g., source of 

input data). 

RAILWAY 

REQUIREMENT #1 Human Agency and Oversight 

Human Agency and Autonomy 

The AI system is designed to interact with and guide human end-users and make decisions that affect 

humans and society. It directly impacts human autonomy, has the potential to generate overreliance, 

and can negatively affect or manipulate the end-user’s decision-making process. It is therefore, 

important that when an operative version of the technology is developed, the implementation partner 

ensures that the employees using the tool are trained to do so and are made aware that they are 

interacting with an AI system. 

The planned system does not simulate social interaction and should, therefore, not risk creating 

human attachment. However, like in the power grid, it can stimulate addictive behavior.  

Human Oversight 

The systems developed for UC2.Railway include a self-learning and partially autonomous agent, with 

human oversight ranging from Human-in-the-Loop to Human-in-Command. It is important for 

employees who use such a tool to be properly trained. In cases where the AI system is the executing 

agent, a procedure must be in place with which operations can be safely transferred back to full human 

control.  

Step 8 of the process described in UC2.Railway in Annex 2 pertains to “Human review and system 

adjustment”, which should include at the least the following:  

• Detection and response mechanisms for undesirable adverse effects of the AI system for the 

end-user 

https://avidml.org/
https://airisk.mit.edu/
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• Oversight and control measures to reflect the self-learning or autonomous nature of the AI 

system 

 

REQUIREMENT #2 Technical Robustness and Safety 

Technical robustness and safety can only be considered to a certain degree within the scope of the 

AI4REALNET project. These questions must be re-considered when the developed solutions are 

implemented in operations.  It can generally be said that there is little to no risk of physical harm to 

humans or damage to infrastructure/material, as collision avoidance in railway systems is handled by 

a separate system, which limits the impact of threats from technical faults, defects, outages, attacks, 

misuse, inappropriate and malicious use. 

Resilience to Attack and Security 

A requirement was defined in the UC to ensure the developed systems are compliant with relevant 

safety and security standards. However, certification, security coverage, and procedures ensuring the 

integrity, robustness, and overall security of the AI system against potential attacks over its lifecycle 

are out of scope for the AI4REALNET project.  

General Safety 

Potential risk areas and metrics can be identified during development. However, concrete assessment 

of risk levels and evaluation of risk metrics is out-of-scope. Safety nets, fault tolerance, and technical 

robustness/safety review depend on the practical implementation of the technologies developed. This 

being said, Step 8 of the UC considers a regular review of the system by a human expert. 

Accuracy 

There is potential for negative societal/financial impacts resulting from low system accuracy. Step 8 

of the UC includes monitoring and documentation of the system’s accuracy.  

When implementing the developed solution in real-world operations, it is important for the system’s 

performance to be continuously monitored and documented and for employees to be informed on 

expected accuracy levels.  

Reliability, Fall-back Plans and Reproducibility 

A detailed analysis of the system’s risks and damaging consequences in case of low reliability is out of 

the scope of this project, as the system will be developed in a simulated environment. However, the 

validation and verification methods of reliability, as well as failsafe fallback plans, will be considered. 

It is specifically required that the transition from algorithmic to full human control is pollable at any 

time and that the operator is explicitly notified when the system yields uncertain results or predictions 

with low accuracy. 

Online learning can lead to unforeseen changes in behavior, necessitating explainability and 

interpretability requirements for the continuous learning process. To ensure that continuous learning 

does not interfere with the system’s reliability, it is required to document the online learning process 

and make it interpretable for humans, allowing for continuous monitoring. 
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REQUIREMENT #3 Privacy and Data Governance 

Privacy 

Requirements ensure compliance with legal standards and regulations. The further mechanisms to 

distinguish and flag privacy concerns should be considered at later stages of development, but they 

are out of the scope of this project. 

Data Governance 

The system does not use private data for training or in a productive environment. The measures 

according to the GDPR are out of scope for this project, as they are not relevant to the types of data 

used. 

 

REQUIREMENT #4 Transparency 

Traceability 

Traceability is fundamental to keep historical records of all main events. Thus, it is possible to replay 

scenarios where AI was used. This means also storing the AI model together with the input and output 

data. 

Explainability 

Explainability and interpretability are essential for human operators and supervisors. Interpretability 

requirements ensure that agent goals, option generation, decision-making, and learning are 

transparent and understandable to the human agent. 

Communication 

The system is designed as a software tool, ensuring that it is always clear to human agents that they 

are interacting with an artificial agent. Human operators and supervisors must understand the 

capabilities and limitations of the AI system to prevent misuse and foster trust. The requirements 

ensure that all aspects of the AI system (agent goals, option generation, decision-making, learning, 

capabilities, and limitations) are communicated to the human agent. 

 

REQUIREMENT #5 Diversity, Non-discrimination and Fairness 

Avoidance of Unfair Bias 

Bias avoidance must be considered during development and monitored after implementation. 

Fairness requirements are introduced to ensure that the system fairly distributes unavoidable delays 

throughout the system and does not unfairly favor specific Railway Undertaking Operating Managers 

(RUOMs). Analysis of end-user groups and diversity considerations cannot be done for a proof-of-

concept. Also, out of scope for this project but potentially interesting for further development are 

mechanisms to detect and flag issues related to bias and discrimination. 

Stakeholder Participation 
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Incorporating stakeholders in the design process ensures that the developed systems fit real-world 

requirements. Workshops involving both stakeholders and the public were conducted at the early 

stages of development planning and will continue parallel to the development of the algorithm. 

 

REQUIREMENT #6 Societal and Environmental Well-being 

Environmental Well-being 

While the AI system is not expected to directly impact the environment, an improved system efficiency 

may result in a positive environmental impact. 

Impact on Work and Skills 

As the system will impact human work and work arrangements, the potential impacts of the 

developed systems must be understood ahead of time so that design considerations can be made 

during development. Workshops are recommended to receive feedback from the intended end users 

as well as psychological considerations provided by Human Factors experts, both of which inform and 

guide the development process of the PoC. The new work arrangements will require some new skills, 

so the design and realization of training courses are essential for implementation, albeit out-of-scope 

for a PoC. 

 

REQUIREMENT #7 Accountability 

Auditability 

Requirements ensure retrospective quality control. Documentation and logging ensure auditability 

and is essential for post-hoc analyses and performance evaluations. 

Risk Management 

Overall, risk analysis and training are out-of-scope for a POC, but planned documentation and logging 

build a foundation with which to establish monitoring mechanisms for internal assessment of AI ethics 

and accountability of the system. 

 

 

REQUIREMENT #1 Human Agency and Oversight 

Human Agency and Autonomy 

 AI systems can generate confusion if the prediction is not within the expected outcome. Still, such a 

situation cannot have an operational impact, as the operator will have the final decision. The end-

users are aware that they are interacting with an AI system; additionally, the decision should be 

communicated through a separate platform for an additional visual reminder of the decision’s origin. 

No risk of addiction or manipulation is expected according to the current description of the UCs. 

However, indirectly, the use of an assistant and the higher acceptance rate of decisions can, for a 
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longer time, affect the confidence and awareness of operators and reduce the time and effort they 

invest in checking the decisions generated by the assistant. 

It is planned to change the system from only generating recommendations for human revision and 

approval or adjustment to fully automated at the later development stages. The transition from a 

lower to a higher level of automation would affect human autonomy and demand stricter rules. 

Human Oversight 

The level of oversight will change with the higher level of autonomy, and the “management by 

exception” system becomes more autonomous. At a lower level of autonomy, the operator checks 

each decision and only implements it if it is considered safe. The manual check by the operator does 

not apply when the decisions are implemented automatically. To ensure no undesirable effects, 

concrete requirements can be derived from KPIs: system reliability and AI prediction robustness. 

An alarm is issued under two conditions: 

• The AI system generates an alarm to the human operator when it cannot produce a 

recommendation that solves the problem, and the human operator must decide. This is 

related to the concept of meta-awareness discussed in the conceptual framework (see section 

3.2.2.2.2). 

• An environmental change can affect the generated decision’s validity. The operator must 

review the decision under new circumstances.  

 

AIR TRAFFIC MANAGEMENT 

REQUIREMENT #2 Technical Robustness and Safety 

Resilience to Attack and Security 

At a higher level of automation, if the decision of the system leads to dangerous situations and is 

implemented without the need for human confirmation, this can lead to damage. 

Security requirements demand that the system be protected against unauthorized access, cyber 

threats, and data breaches.  

General Safety 

Stability and reliability are essential in an AI assistant. Two robustness requirements specify that the 

system should work correctly under normal and unexpected circumstances. To ensure this, risk 

evaluation is essential for the design of the safety properties of the systems. After evaluation, the risks 

should be included in training materials.  

As algorithms are based on online RL, changes should be logged in the model or algorithm design, and 

clear notifications should be given to the operator if the version of the system changes during a 

decision process. This will help avoid confusion if the new version exhibits different behavior. 

Accuracy 
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Although the system only serves as a recommender, if it produces decisions with a low level of 

accuracy, there is still a risk of adverse consequences in the case of a deficient performance of the 

human-in-the-loop operator.  

It is mentioned in the UC description that the data is coming from many sources, and the data 

infrastructure is demanding. A validation procedure is advisable to ensure the correct database is 

used. 

The KPIs acceptance and agreement score are based on comparing AI-generated suggestions and 

decisions accepted by the operator. These are good metrics to ensure the accuracy of the AI system. 

Reliability, Fall-back Plans and Reproducibility 

At a low level of autonomy, human operators will monitor the decisions and estimate the risks before 

applying an AI-generated recommendation. At a higher level of autonomy, automatically 

implemented decisions can lead to adverse consequences. To evaluate and ensure different aspects 

of the AI system’s reliability and reproducibility, such KPIs as the significance of human revisions, 

system reliability, and AI prediction robustness can be logged for continuous monitoring and analysis 

of the system performance. 

Governance procedures should be developed to specify the conditions for fallback; this is specifically 

important for the later development stages, when the decisions are implemented automatically, 

without the need for consent from the human operator. 

 

REQUIREMENT #3 Privacy and Data Governance 

Privacy 

No private data is planned to be used during training or operation. 

Data Governance 
The calculation of these KPIs will involve the processing of personal data, which must be fully 

anonymized. Since the identification of individuals who made or revised decisions is irrelevant for 

these calculations, all data must be handled in a way that ensures anonymity, protecting personal 

information while preserving the accuracy of the KPIs.  

 

REQUIREMENT #4 Transparency 

Traceability 

Currently, information is scattered over various ATM systems, which makes the oversight of the input 

data and their quality assessment even more important for the accuracy of the decisions. It is planned 

to log all human interventions into AI decisions. The logging can be extended by the documentation 

of input data that were used to generate the decision. 

Explainability 
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Humans can consult additional information and explanations underpinning AI decisions on demand, 

which is expected to foster trust in the system’s decisions and acceptance of the AI system. 

The KPI “Trust in AI solutions” score describes the operator's confidence in the AI-generated solution, 

with and without the need for additional explanations. Evaluating the difference between the KPI with 

and without explanation can show if the explanations are helpful. The KPI “Prompt demand rate” 

shows how often the operator needs additional explanation and what kind of explanations are used, 

which can serve as a source of information about potential system improvements. A routine for 

continuous surveys can be implemented as a part of the assessment of human-system interaction, the 

result of which can be logged together with the implemented decision. 

Communication 

During the training process, operators will be informed about the purpose, criteria, and limitations of 

the decision(s) generated by the AI system. 

 

REQUIREMENT #5 Diversity, Non-discrimination and Fairness 

Avoidance of Unfair Bias 

The biases are not expected in the UC description. 

Accessibility and Universal Design 

The AI will provide recommendations to human operators. It will not directly impact target end-users 

and/or subjects.  

The ATC staff may be impacted by the AI system regarding their workload. While AI can optimize 

operations, it also changes the nature of work, requiring a shift in skills for human operators who now 

need to oversee and interact with advanced AI systems. 

The introduction of the AI system might lead to concerns about job displacement and the need to 

reskill ATC staff. 

Stakeholder Participation 

Stakeholders have been consulted during UC design and can be consulted during the AI system design. 

Surveying operators will also help understand the AI system's benefits, limitations, and risks and 

extract lessons for further improvement. 

 

REQUIREMENT #6 Societal and Environmental Well-being 

Environmental Well-being 

The system aims to reduce the load on the air traffic system and reduce the environmental impact by 

reducing carbon emissions. Metrics can be developed to calculate the saved carbon emissions and the 

system’s positive environmental impact. 

Impact on Work and Skills 
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The AI system will augment human operator analytics capabilities and decision-making tasks. Training 

prior to the implementation of the new AI system should help the operator overcome their doubts or 

fears concerning the change in their work methods. Extended knowledge about the fundamentals 

behind the AI system can help human operators understand the decision-support process. Training 

should be provided before the AI system is implemented. 

Impact on Society at Large or Democracy 

No impact is expected. 

 

REQUIREMENT #7 Accountability 

Auditability 

Traceability of the recommendation of the AI assistant down to the model should be ensured. Saving 

the AI model (weights, hyperparameters, structure) and input data is essential for auditability.  

Due to the nature of RL algorithms, continuous learning will change the state of the system and should 

be audited after each system update. 

Risk Management 

The code for the models developed during the project will be made publicly available as baselines for 

future benchmarking efforts, with reproducibility being a central requirement. This approach ensures 

that other researchers and practitioners can trace and verify the results. It is important to clarify that 

AI4REALNET does not anticipate the operational deployment of these AI systems in a real-world 

environment. Should such deployment become a consideration, it would be essential to develop 

robust software methodologies to ensure the traceability and accountability of the operational 

algorithms.  
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ANNEX 4 – CONTEXT, CHARACTERISTICS, 

IMPACT AND EVALUATION OF DECISIONS 

This annex details the elements of section 3.1.2. 

WORD ANALYSIS 

METHODOLOGY 

Context, characteristics, impacts, and evaluation of the decision process contain a list of questions and 

answers per domain, allowing for a characterization from each domain’s perspective. 

For each question, the list of the most significant words has been extracted: it corresponds to the set 

of words that are put in bold. For example, the list of words for characteristics of decision for the 

“Time constraints” category and Air Traffic domain is the following: “Strategic planning,” “Operational 

adjustments,” “Unexpected conditions,” “Pre-tactical,” and “Tactical.” 

Then, a similarity analysis is performed between each pair of items of different domains within a given 

category by calculating a cosine similarity36 between embedding37 of the corresponding items. A 

threshold (e.g. 0.838) above which 2 items from 2 different domains are considered “similar” is defined. 

The score of similarity is the percentage share of “similar” pairs of items when crossing 2 domains, 

compared to the total number of pairs of items (this can be computed at different levels, e.g., per 

category, per domain, etc.). 

RESULTS 

This sub-section presents the result of the similarity analysis performed between each pair of items of 

different domains for each category: context, characteristics, impacts, and evaluation of decisions. 

SIMILARITY ANALYSIS FOR CONTEXT OF THE DECISION PROCESS 

Category Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Constraints 

exceeding network 

capacity, network 

capacity  

- - 

 
36 Normalized dot product of X and Y, see, for example, the cosine_similarity from the scikit-learn library (https://scikit-
learn.org/stable/index.html)  

37 Embedding is calculated using the sentence-transformers library and the open-source models from Huggingface platform. Models used 
for embedding are picked from the sbert.net sentence transformer library (https://www.sbert.net/index.html) and, more specifically, from 
pre-trained semantic search models (https://www.sbert.net/docs/sentence_transformer/pretrained_models.html#semantic-search-
models) trained on scientific citations and can be used to estimate the similarity of two publications (SPECTER). 

38 Corresponds to the 80 percentile. 

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://www.sbert.net/index.html
https://www.sbert.net/docs/sentence_transformer/pretrained_models.html#semantic-search-models
https://www.sbert.net/docs/sentence_transformer/pretrained_models.html#semantic-search-models
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Category Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Forecasting - 

operational delays, 

traffic flow and 

congestion, 

outage risk, 

topology, 

infrastructure failure risks 

weather impact, 

weather condition 

Observations 

information from 

different platforms, 

external context, 

availability of actions, 

external events 

power grid state, 

external context, 

 

signal and control system 

status, 

weather conditions, 

availability of actions, 

external events 

external events 

Operators 
multiple operators, 

one or multiple operators 
multiple operators 

multiple operators, 

one or multiple operators 

Possible 

Events 
- - 

health emergencies, 

regional or global health 

emergencies, 

technical failures, 

environmental 

conditions, 

adverse weather, 

operational disruptions, 

accidents and 

emergencies, 

operational disruptions  

Uncertainty 

maintenance operations, 

human factors, 

technical failures, 

outage planning 

maintenance operations, 

technical failures, 

human factors, 

outage planning 

technical failures, 

human factors, 

weather and 

environmental conditions 

SIMILARITY ANALYSIS FOR DECISION CHARACTERISTICS 

Category Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Action Type preventive or corrective  

preventive or corrective, 

preventive (operational 

adjustments)  

preventive or corrective, 

preventive (operational 

adjustments)  

Implementation planned or real-time  
real-time, 

planned or real-time  

real-time, 

planned or real-time  

Size of action 

space 

large and mixed action 

space 

large and mixed action 

space 

large and mixed action 

space 
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Category Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Time 

Constraints 
- - 

operational 

adjustments, 

strategic planning, 

unexpected conditions, 

tactical, 

maintenance scheduling 

Time step 

real-time to medium-

term, 

real-time to long-term 

real-time to long-term 

real-time to medium-

term, 

real-time to long-term 

Trade-offs - 

risk versus 

consequences, 

cost versus innovation, 

safety versus efficiency 

operational flexibility 

versus standardization, 

cost versus innovation, 

capacity versus quality 

of service, 

safety versus efficiency, 

capacity versus 

efficiency 

SIMILARITY ANALYSIS FOR IMPACTS OF A DECISION 

Category Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Recovery 

time 
- 

actions can be reverted in 

a couple of hours, 

can vary significantly, 

depending on several 

factors 

- 

Lasting 

Effects 
-  - 

SIMILARITY ANALYSIS FOR EVALUATION OF A DECISION 

The evaluation is based on KPIs that have been defined for each UC and grouped into the following 

categories: 

• Technical quality of AI-based solutions, 

• Quality of AI-based solutions as perceived by human operators, 

• Human-AI interaction, 

• Efficiency of combined human-AI performance, 

• Cognitive load, 

• Robustness, 

• Trustworthiness. 
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Category Air Traffic-Electricity Electricity-Railway Railway-Air Traffic 

Cognitive load 

workload perception, 

workload, 

assistant disturbance, 

human response time 

workload, 

assistant disturbance, 

human information 

processing 

workload perception, 

human response time, 

human information 

processing 

The efficiency 

of combined 

human-AI 

performance 

- 

total decision time, 

response time, 

ability to anticipate 

- 

Human-AI 

interaction 
- 

decision support for the 

human operator, 

human learning, 

human control and 

autonomy over the 

process 

- 

Quality of AI-

based solutions 

perceived by 

human 

operators 

efficiency score, 

assistant relevance, 

agreement score 

assistant relevance, 

acceptance, 

situation awareness, 

comprehensibility  

decision support 

satisfaction, 

comprehensibility, 

significance of human 

revisions, 

prompt demand rate, 

acceptance, 

assistant relevance, 

efficiency score, 

acceptance score, 

agreement score 

Robustness 

AI prediction 

robustness, 

generalization to 

different grids 

- - 

Technical 

quality of AI-

based solutions 

network utilization, 

reduction in delays 

network utilization, 

topological action 

complexity, 

delay reduction 

efficiency, 

punctuality 

reduction in delays, 

response time, 

delay reduction 

efficiency 

Trustworthiness 

trust towards the AI 

system, 

trust in AI solutions 

score 

human motivation, 

trust towards the AI 

system 

trust towards the AI 

system, 

trust in AI solutions 

score 
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DETAILED ANSWERS 

The chapters hereafter list the detailed answers about context, characteristics, impacts, and 

evaluation of decisions for each domain. 

All detailed answers have been used to extract the main characteristics of decisions across domains. 

CONTEXT OF THE DECISION PROCESS 

Hereafter, a list of questions allows for characterizing the context in which the decision process is 

conducted regarding following subtopics: network and resource management, event handling and 

uncertainty. 
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NETWORK AND RESOURCE MANAGEMENT 

Network Capacity: What defines network capacity? 

Air Traffic  Electricity Railway 

NM = Network Manager (EUROCONTROL Unit) 

CNS = Communication; Navigation; Surveillance 

ATCO = Air traffic controller 

The network capacity depends on: 

• Area (airspace dimension) 

• Route structure 

• Aeronautical (CNS) Systems/Equipment 

availability 

• Demand (NM)  

• Airport Infrastructure 

• Staff availability (ATCO): For instance, when 

planning long/mid-term resources, it is essential 

to ensure that the training requirements do not 

overly detract from the availability of air traffic 

controllers for real-time operations. 

The overall network capacity depends on 

the capacity of each of its given 

transmission lines, the latter being 

defined by: 

• A maximum current threshold  

• A maximum duration during which the 

amount of current flowing on the line 

can reach this threshold. 

In the context of the project, the capacity 

of the network is only considered from the 

point of view of its capacity to pass 

current. Other issues, such as voltage, 

inertia, or stability, are not considered in 

the scope of AI4REALNET. 

• Train Frequency and Schedule 

• Operational Strategies: The approach to 

managing train operations, including 

prioritization of certain types of trains 

In the context of the project, following 

elements have less priority. 

• Track Layout and Infrastructure 

• Signal and Control Systems 

• Train Length and Composition 

• Maintenance and Upkeep: Regular 

maintenance ensures that all components 

of the railway infrastructure are in 

optimal condition, reducing the likelihood 

of failures that can decrease capacity 
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Constraints: What are the constraints or congestion issues? 

Air Traffic  Electricity Railway 

Capacity constrains arise from unpredictable 

events that affect the nominal sector 

capacity: 

Network capacity (see above) 

Military area activation 

Adverse weather or disruptive events 

Separations (between aircrafts)  

Sectorization (to increase capacity) 

ATCO Workload 

Congestion arises when network capacity is 

exceeded. It can occur in:  

• “N” situation, where all elements of the 

transmission grid are available (not 

considering planned maintenance) 

• “N-k” situation, in case of an unplanned 

outage (k = 1 in practice, except for very 

specific cases) 

Congestions can arise because of too much 

generation in some area that needs to get 

evacuated (especially with new renewable plants 

and high wind or PV gradients), too much 

consumption in some area that needs to be 

supplied without local generation, high imports 

or exports to other countries, or weaker 

transmission grid because of planned or 

unplanned outages. Storms, Snow, and Big 

National events can be days with higher 

congestions in real-life.  

Note: other types of constraints can arise, such as 

voltage constraints, dynamic stability, etc., that 

are not considered in the scope of the project. 

Train Frequency and Schedule Constraints: 

High demand for track access by various types 

of trains (freight, passenger, high-speed) can 

lead to scheduling conflicts and congestion. 

The rigid scheduling of trains can reduce the 

system's ability to adapt to real-time demands 

or disruptions. 

Operational Strategies: Fixed prioritization of 

certain types of trains (e.g., passenger over 

freight) can lead to suboptimal utilization of 

network capacity. Inflexible operational 

strategies may not adequately respond to 

varying demand or unexpected disruptions. 

Human Factors: Resistance to change, skill 

gaps, and concerns about job security among 

railway staff can pose significant challenges to 

the adoption of AI technologies and the 

transition to more autonomous systems. 

In the context of the project, following 

elements have less priority. 

Track Layout and Infrastructure Constraints: 

The physical limitations of the railway network, 

such as track layout, tunnels, bridges, and 
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crossings, can limit the capacity and flexibility 

of train operations. Tight curves, steep 

gradients, and bottleneck points can restrict 

train speed and frequency. 

Signal and Control System Limitations: The 

efficiency and reliability of signal and control 

systems directly impact train movement and 

safety. Outdated or malfunctioning signal 

systems can cause delays, reduce track 

capacity, and limit the potential for automation 

and real-time decision-making. 

Train Length and Composition Issues: Longer 

trains can carry more cargo or passengers per 

trip but may face restrictions on certain routes 

due to platform lengths and track layouts. The 

composition of trains (e.g., mixed freight) also 

affects handling and speed, potentially leading 

to inefficiencies and congestion. 

Maintenance and Upkeep: Inadequate or 

irregular maintenance can lead to equipment 

failures, track damage, and signal issues, 

directly impacting capacity and safety. The 

challenge is to balance maintenance needs 

with operational demands, minimizing 
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downtime while ensuring infrastructure 

integrity. 

Integration with Other Modes of Transport: 

The inability to efficiently integrate railway 

operations with other modes of transport (e.g., 

road, maritime) can create bottlenecks at 

transfer points, affecting the overall efficiency 

of cargo and passenger flows. 

Regulatory and Safety Constraints: Regulatory 

requirements, including safety standards and 

operational guidelines, can impose limitations 

on train operations, affecting scheduling, train 

composition, and the adoption of new 

technologies or operational strategies. 

Technological and Data Limitations: The 

effectiveness of AI-based solutions is heavily 

dependent on the availability and quality of 

data. Limitations in data collection, processing, 

and sharing can hinder the development and 

implementation of AI algorithms. 
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Operators: Are one or multiple operators involved? 

Air Traffic  Electricity Railway 

Several stakeholders are involved in a 

Collaborative Decision-Making process: 

• Systems Technical Supervision (STS) & 

Maintenance staff CNS/ATM 

• ATCO (air traffic management) 

• Airliners 

• Airport operators 

• EUROCONTROL Network Manager (NM) 

• National Air Force (FAP) 

In terms of the air traffic management task, 

generally, the decision is taken by one sole 

operator (supervisor or tactical ATCO).  

If not a real-time decision, there may be more 

contributors for the decision under the lead of 

one operator (e.g., planner ATCO, FMP 

supervisor). 

Depending on the complexity of the 

problem, multiple operators might need to 

coordinate to make the decision: other RTE’s 

control center, field operators, market 

participant operators, DSO operators, etc.  

One operator is always leading: this is 

defined ex-ante according to operational 

rules (e.g., in case a line crosses several 

RTE’s control center areas, one control 

center is leading, or in case of escalation 

needs, operations’ management people can 

be involved). 

In this project, we will consider only one 

given operator managing congestion and 

interacting with the AI. 

The railway system requires the collaboration 

of multiple operators, encompassing those 

managing infrastructure, train operations, 

maintenance, and integration with other 

transport modes.  

This multi-operator environment is necessary 

to address the diverse constraints and ensure 

efficient, safe railway operations, particularly 

when integrating AI technologies. 
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EVENT HANDLING AND UNCERTAINTY 

Possible Events: What kind of events can happen? 

Air Traffic  Electricity Railway 

Partial airspace closure 

Operational disruptions: system failures, 

staff strikes (leading to deviations), corrective 

maintenance 

Adverse Weather 

Sector Capacity overload 

Cybersecurity incidents 

Accidents and emergencies 

Regional or global health emergencies like 

Pandemics or regional health crises can affect 

staff availability and demand for travel, 

forcing the need to adapt operations. 

 

In this project, only events and uncertainties 

applicable to operations conducted in control 

centers and related to network and constraints as 

defined above are considered.  

Outage of a transmission grid element (e.g., 

transmission line), which can have several causes: 

• Planned maintenance for several days 

• Unplanned maintenance (a list of non-urgent 

operations is updated, and in case operating 

conditions are favorable, they are carried out) 

• Unplanned outages due to unplanned events 

(controlling device failures or any other 

failure, storm, thunderstorm, malicious acts, 

human factor) 

The list of unplanned outages is predefined and 

continuously monitored: in case of severe 

anticipated weather conditions (e.g., 

thunderstorm), additional outages are monitored 

(such conditions can lead to outages that would 

be less probable in normal conditions). 

Technical Failures: This includes signal 

failures, malfunctioning control systems, and 

breakdowns of trains or infrastructure 

components. Technical failures can lead to 

significant delays and safety risks. 

Environmental Conditions: Extreme weather 

conditions such as heavy snowfall, storms, 

floods, or landslides can damage 

infrastructure, obstruct tracks, and lead to 

service disruptions. 

Accidents and Emergencies: Collisions, 

derailments, or incidents at level crossings can 

have severe consequences for safety, service 

continuity, and infrastructure integrity. 

Operational Disruptions: These can arise from 

unexpected maintenance issues, power 

outages, or failures in communication 

systems, impacting the regular flow of train 

services. 

Health Emergencies: Pandemics or localized 

health crises can affect staff availability, 
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In the case of important and strategic 

infrastructure projects, outages can be planned 

years or even multiple years in advance. 

The outage can also concern generation units 

(even if these assets are not under TSOs’ direct 

responsibility): maintenance planning of 

generation units is important (especially if the 

unit is large).eIn this project, following elements 

are modeled:ePlanned maintenance with a 

standard duration of about a day and without 

delays,eUnplanned events such as line 

contingencies and unexpected line disconnections 

occur. A standard duration of several hours is 

applied for recovering the asset.  

Differences between forecasted flows and real 

flows: TSOs are simulating flows on their 

transmission grid to anticipate as best as possible 

the consequences of possible events. This 

requires relevant grid modeling and forecasts, as 

well as a definition of monitored events 

(according to operational policies). Thus, 

important discrepancies between forecasted 

flows and real flows are possible events that can 

worsen the operational conditions. Such events 

can originate from: 

demand for travel, and necessitate changes in 

operations to ensure passenger safety. 

In the context of the project, following 

elements have less priority. 

Cybersecurity Incidents: Attacks on the 

control systems, data breaches, or disruptions 

to operational technology can pose significant 

risks to safety and operations. 

Human Factors: Errors or misjudgements by 

staff, strikes, or other labour-related issues 

can affect train scheduling and operational 

efficiency. 

Regulatory Changes: New safety, operational, 

or environmental regulations may require 

adjustments in operations, sometimes on 

short notice. 

Demand Fluctuations: Sudden increases or 

decreases in passenger or freight demand, 

possibly due to external events or seasonal 

variations, can strain capacity and scheduling. 

Integration Challenges with Other Modes: 

Delays or disruptions in other transport modes 

can have a knock-on effect on railway 
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• Bad inputs from market participants 

• Actions or failures from market participants 

(e.g., a generation unit is not generating as 

planned) 

• Forecasting errors for highly stochastic 

weather-based sources such as renewable 

energy sources or demand 

• Bad modelling in the tools, incorrect 

hypothesis, delayed outages 

In this project, stochasticity from local generation 

and demand is considered. Market players bids 

are not given explicitly but forecast for generation 

are provided. 

operations, especially at intermodal transfer 

points. 
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Observations: What are the important observations for perception? 

Air Traffic  Electricity Railway 

Information from several other platforms: 

• NM (sector capacity and demand) 

• Adherence to the plan (departure from 

airports) 

• Area availability 

• CNS equipment’s availability (e.g. planned 

maintenance) 

External events that will impact ATM (regarding 

airport congestion and airplanes parking): 

Summits (e.g., Web summit), major events 

(Soccer tournament’s finals, music festivals) 

Power Grid state, which is composed of: 

Information needed to estimate the usage level 

of network capacity and remaining margin:  

• Measures  

• Topology (e.g., circuit breaker positions) 

Information needed to elaborate the forecasted 

grid modelling: 

• Topology 

• Generation schedules and forecasts (some 

of which are linked with weather forecasts) 

• Demand forecast 

• Maintenance planning (with associated 

criticality) 

• Localization of demand and RES generation 

• Market conditions (in some cases, this can 

help improving RES forecasts) 

Availability of actions: operators must know 

the current state of flexibilities and the one that 

are currently available. For instance, some lines 

or substations might need some cooldown time 

before being switched again, or generation 

Infrastructure Condition: Monitoring the 

physical condition of tracks, bridges, tunnels, 

and other critical infrastructure components 

for signs of wear, damage, or other issues 

that could impact safety or performance. 

Weather Conditions: Observing weather 

patterns and environmental conditions that 

could affect railway operations, such as 

temperature extremes, precipitation, wind 

speeds, and natural disasters. 

Train Status and Performance: Tracking the 

real-time status of trains, including their 

location, speed, and operational health. This 

also involves monitoring the condition of 

onboard systems and components. 

Signal and Control System Status: Keeping 

tabs on the functionality and performance of 

signal systems and automated control 

mechanisms to ensure they are operating 

correctly and safely. 

Traffic Flow and Congestion: Observing the 

movement of trains throughout the network 

to identify bottlenecks, congestion, or 
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units can have activation time constraint to 

consider for redispatching. 

External context information that can imply 

• Additional outage risks (due to storm, 

thunder, fires) 

• Putting extra attention (e.g., important 

events such as Olympics),  

• Modifying the operation (e.g., important 

accidents, ongoing fires, or protests) on 

some parts of the grid.  

This means that operators are liaising with 

other authorities.  

In this project, external context information is 

not considered. 

potential conflicts that could lead to delays 

or safety risks. 

External Events: Being aware of events or 

situations outside the railway system that 

could impact operations, such as road traffic 

conditions near crossings, public events 

affecting demand, or disruptions in other 

transport modes. 

In the context of the project, following 

elements have less priority. 

Passenger and Freight Volumes: Monitoring 

passenger flows and freight loads to manage 

capacity effectively and anticipate demand 

fluctuations. 

Maintenance and Upkeep Activities: 

Tracking scheduled and unscheduled 

maintenance activities to ensure they are 

completed efficiently and do not unduly 

disrupt operations. 

Regulatory and Compliance Changes: 

Keeping updated on changes in regulations 

or safety standards that could affect 

operational practices or require adjustments 

to equipment or procedures. 
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Cybersecurity Threats: Monitoring for signs 

of cyber threats or vulnerabilities that could 

impact operational technology, control 

systems, or data integrity. 

Human Factors: Observing the performance 

and behavior of personnel involved in railway 

operations to identify potential errors, 

inefficiencies, or areas for improvement in 

training and operations. 
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Uncertainty: What can be delayed or uncertain? 

Air Traffic  Electricity Railway 

Accidents/incidents impact in airports, such as: 

Weather and Environmental Conditions: 

Predicting weather conditions and their impact 

on operations involves a degree of uncertainty. 

Extreme or adverse weather can cause 

unexpected delays or the need to apply changes 

in operations. 

Technical Failures: The occurrence of technical 

failures, such as systems breakdowns (although 

there exists redundancy in aeronautical systems, 

some failures can impact infrastructure 

availability are inherently unpredictable, and 

may impact operations and cause delays. 

Human Factors: Variability in human behavior, 

such as operator errors or unexpected absences, 

can introduce uncertainties into the system.  

Potential Cybersecurity Threats: although the 

probability of a cyber-attack is very low due to 

the defensive barriers, if it happens, it will have a 

huge impact on operations. 

In the context of the project, following elements 

have less priority. 

Uncertainty concerns: 

• Transit flows on grid elements 

(transmission lines) because of generation 

or consumption uncertainties, as well as 

unexpected event 

• Possibility to carry out a given remedial 

action (the associated uncertainty is 

normally very low thanks to operational 

rules, procedures, maintenance, and 

operation preparation) 

Delay can impact: 

• Maintenance operations on the grid 

• Outage planning from generation units 

(especially large ones) 

Infrastructure Repairs and Upgrades: The 

timing and duration of infrastructure 

maintenance or upgrade projects can be 

uncertain, affected by unforeseen 

complications or delays in securing necessary 

materials or approvals. 

Weather and Environmental Conditions: 

Predicting weather conditions and their 

impact on railway operations involves a 

degree of uncertainty. Extreme weather can 

cause unexpected delays or necessitate 

changes in operations. 

Technical Failures: The occurrence of 

technical failures, such as signal system 

malfunctions or rolling stock breakdowns, is 

inherently unpredictable, leading to 

unplanned delays and operational 

disruptions. 

Human Factors: Variability in human 

behavior, such as operator errors or 

unexpected absences, can introduce 

uncertainties into the system. Additionally, 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

295 

 

Air Traffic  Electricity Railway 

Technical Infrastructure & Upgrades: The timing 

and duration of infrastructure maintenance or 

even upgrade projects can be uncertain and 

affected by unforeseen complications or delays. 

 

 

the response time and decision-making 

process in emergency situations can vary. 

Passenger and Freight Demand: Fluctuations 

in passenger numbers and freight volumes 

can be uncertain and affected by factors like 

economic conditions, public events, or 

changes in consumer behavior. 

In the context of the project, the following 

elements have less priority. 

Regulatory Changes: The timing and impact 

of regulatory changes, including new safety 

or environmental regulations, can be 

uncertain, requiring adjustments to 

operations or equipment that may not have 

clear implementation timelines. 

Traffic Congestion: Predicting traffic flows 

and congestion levels on the railway network 

involves uncertainty, particularly in the face 

of disruptions, special events, or sudden 

changes in demand. 

Supply Chain Delays: Uncertainties in the 

supply chain, affecting the availability of 

spare parts for maintenance or upgrades, can 

lead to delays in scheduled works or repairs. 
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Cybersecurity Threats: The nature and timing 

of cybersecurity threats can be highly 

uncertain, with potential impacts on 

operational technology and control systems 

that are difficult to predict in advance. 

Integration with Other Transport Modes: 

Delays or uncertainties in other transport 

modes, such as road or maritime transport, 

can impact railway operations, particularly at 

intermodal transfer points. 
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Forecasting: What can be forecasted? 

Air Traffic  Electricity Railway 

Military airspace activations 

Weather condition 

Known ATCO staff shortages 

Scheduled maintenance of CNS equipment 

 

Transit flows on grid elements (transmission 

lines), including all required inputs (forecasts, 

outages, etc.) 

Local generation or consumption is still 

difficult; this is often more done at a regional or 

national level. In this project, we will consider 

local forecasts for simplifications. 

Outage risk due to weather conditions. 

However, an unplanned outage (of a line or 

generation unit) cannot be forecasted as such. 

Topology can be forecasted in case actions are 

conducted as part of a long-term strategy. 

 

Passenger and Freight Demand: AI can predict 

fluctuations in passenger numbers and freight 

volumes based on historical data, seasonal 

trends, economic indicators, and special events, 

helping to optimize capacity and scheduling. 

Traffic Flow and Congestion: AI can forecast 

potential congestion points and traffic flow by 

analyzing current and historical traffic patterns, 

enabling better resource allocation and 

operational planning. 

Weather Impact on Operations: Advanced 

weather forecasting models can predict the 

impact of weather conditions on railway 

operations, allowing for preventive adjustments 

to schedules and maintenance plans. 

Infrastructure Failure Risks: Predictive 

maintenance tools use data from sensors and 

historical maintenance records to forecast the 

likelihood of infrastructure or equipment 

failures, minimizing downtime and preventing 

disruptions. 

Operational Delays: ML algorithms can analyze 

patterns in operational data to predict delays, 
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identify root causes, and suggest improvements 

to reduce future occurrences. 

In the context of the project, the following 

elements have less priority. 

Service Disruptions: AI can predict potential 

disruptions to service, including those caused 

by technical failures, environmental conditions, 

or external events, facilitating quicker response 

and mitigation strategies. 

Energy Consumption and Costs: AI can forecast 

energy consumption and costs for train 

operations, assisting in optimizing energy use 

and identifying cost-saving opportunities. 

Safety and Security Risks: By analyzing incident 

reports, security data, and external threat 

intelligence, AI can predict potential safety and 

security risks, enhancing preventative 

measures. 

Regulatory and Compliance Changes: While 

challenging, AI systems can track regulatory 

trends and predict future compliance 

requirements, helping railway operators avoid 

legal changes. 
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Technological Advancements and Adoption 

Rates: Predictive analytics can estimate new 

technologies' impact and adoption rates within 

the railway sector, guiding investment and 

development decisions. 

Economic and Societal Trends: AI can analyze 

broader economic and societal trends that 

might affect railway operations, such as shifts in 

urbanization, trade patterns, or travel 

preferences. 
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DECISION CHARACTERISTICS 

From a general point of view, 3 types of decisions can be distinguished: 

• Strategic Decisions: Long-term timeframe, large scope, high level of complexity, significant 

resources, and high impact. 

• Tactical Decisions: Medium-term timeframe, moderate complexity, translate strategic goals 

into actionable plans, requiring analysis and coordination. 

• Operational Decisions: Short-term timeframe, specific tasks or activities, low level of 

complexity, structured tasks with defined procedures. 

Hereafter, a list of questions allows for characterizing more in detail the decisions taken, with 

following topics: tradeoffs, time constraints, time step, implementation, action type, size of action 

space. 
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TRADEOFFS: WHAT ARE THE POTENTIAL TRADEOFFS (OR GOALS) INVOLVED? 

Tradeoffs allow for better characterization of the multiple objective nature of the decision process: 

Air Traffic  Electricity Railway 

Safety versus Capacity: Higher capacity 

demand challenges keeping the desired safety 

level (the probability of occurrence of critical 

events increase). 

Capacity versus Efficiency: As capacity 

increases, the efficiency rises if the routes are 

the desirable for each aircraft. 

When the existing conditions don’t support the 

direct route as the most efficient, the aircraft 

pilot's preference/request cannot be satisfied. 

The efficiency interests have different points of 

view between aircraft crew (pilot) and ATC. 

 

 

From a general point of view, real-time 

operation decisions shall search for the best 

compromise between: 

• personal safety 

• maintaining the operational safety of the 

System 

• compliance with the operating limits of the 

components of the electrical system 

• the quality of electricity and compliance 

with contractual commitments 

• optimization of interconnection capacities 

• cost reduction (congestion and losses) 

• guaranteeing the completion of 

maintenance work 

More specifically, risk management is centered 

around the risk/consequences tradeoff. The 

risk is defined by the product of: 

• Consequences of the event, assessed from 

a grid operation perspective (forecasts or 

close to real-time), which are, in the 

Cost versus Innovation: Investing in new 

technologies and innovations can significantly 

improve operations and customer satisfaction 

in the long term but may require substantial 

upfront costs and financial risk. 

Capacity versus Quality of Service: Expanding 

capacity to accommodate more trains or 

passengers might strain resources or degrade 

service quality, affecting punctuality, comfort, 

and overall customer experience. 

Operational Flexibility versus Standardization: 

Standardizing operations can lead to 

efficiencies and easier management but may 

reduce the system's ability to adapt to local 

conditions or unexpected disruptions. 

In the context of the project, following elements 

have less priority. 

Short-term Gains versus Long-term 

Sustainability: Decisions may offer immediate 

improvements or cost savings but could 

undermine long-term sustainability goals, such 
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context of this project, the constraints 

coming from the transit flows  

• Probability of the event, assessed mainly 

from ex-ante statistical studies performed 

on realized events 

This means that a low-probability event with 

important consequences will be considered 

similarly to a high-probability event with few 

consequences: 

 

The above figure means that: 

• Events are classified on the x-axis 

according to predefined frequencies (e.g., 

once every 10 years) 

• A threshold is defined (red stepped curve) 

on the y-axis for each category of events, 

as environmental impact reduction or 

infrastructure resilience. 

Customer Satisfaction versus Operational 

Constraints: Enhancing customer satisfaction 

through more services, lower fares, or 

enhanced amenities may conflict with 

operational constraints, financial viability, or 

regulatory requirements. 

Maintenance versus Operational Availability: 

Regular and thorough maintenance is crucial 

for safety and reliability but can reduce the 

availability of assets for operation, affecting 

service levels and financial performance. 

Innovation Adoption versus Workforce 

Impact: Implementing automation and AI 

technologies can improve efficiency and safety 

but may lead to workforce displacement, 

requiring significant investments in retraining 

and change management. 

Data Privacy versus Operational Intelligence: 

Collecting and analyzing data can significantly 

enhance operational intelligence and customer 

service but must be balanced against concerns 

about data privacy and security. 

Event 
probability

Event 
consequence
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with acceptable consequences (e.g., for 

rare events, it is possible to go up to a 

certain volume of load shedding) 

The blue curve depicts the possible risk 

assessment that can be performed in the 

operation context to refine the analysis. 

Consequences of the event are ranked from 

acceptable to last resort, e.g.: 

• Maintenance planning delays and/or costs 

(especially for critical projects) 

• Involved costs 

• Load (or generation) shedding 

• Consequences on grid users 

• Size/volume of involved generation or 

consumption involved 

They also include side effects on other 

operational processes: redispatching must not 

hamper the balance of the system 

Probability of the event: can be re-evaluated 

during operation: for example, an issue 

anticipated in a distant horizon might be less 

certain than an issue anticipated in 1h or less. 

Regulatory Compliance  versus Operational 

Flexibility: Adhering to regulatory 

requirements ensures safety and 

standardization but can limit operational 

flexibility and the ability to adopt innovative 

solutions quickly. 

Environmental Impact versus Operational 

Needs: Reducing the environmental impact of 

railway operations, for instance, through 

electrification or using alternative fuels, may 

require trade-offs with operational needs or 

cost implications. 
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TIME CONSTRAINTS: HOW MUCH TIME FOR DECISION-MAKING AND PLANNING? 
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Strategic planning: 

• Military areas activation (scheduled) 

• Planned reserved areas activation (balloons 

launch, etc.) 

Operational adjustments: 

• Military areas activation (unscheduled) 

• ATCO staff shortage 

• Sector capacity management 

• Airline/Pilot route adjustment request 

Unexpected conditions: 

• Adverse weather conditions 

• Unexpected airspace events (e.g., Volcanic 

ashes) 

• Inbound deviation of traffic flows from 

adjacent sectors/FIRs 

Pre-tactical (up to 1-2 hours): sectorization 

Tactical (few minutes): sectorization and traffic 

management 

 

Each decision to be taken in 

anticipation is associated with its 

“LTTD” (Last Time To Decide), i.e., last 

moment to launch the action to that 

the effects are implemented before 

the targeted deadline. 

 

LTTD can be calculated by subtracting 

the action lead-time from the targeted 

deadline. 

Note: indicative timings are defined on 

RTE’s side to allow considering 

duration associated to topological 

actions (e.g., up to 20 minutes to 

conduct 7 topological actions). 

Emergency Responses: In the case of emergencies 

or unexpected disruptions (e.g., accidents, 

technical failures), decision-making time is 

extremely limited. Decisions often need to be 

made in real-time or within minutes to ensure 

safety and minimize operational impact. 

Operational Adjustments: Short-term operational 

decisions, such as rerouting trains due to a 

temporary obstruction or adjusting schedules in 

response to unexpected demand fluctuations, may 

have a slightly longer timeframe, ranging from 

minutes to a few hours. 

Maintenance Scheduling: Decisions regarding 

routine maintenance and repairs often have a 

medium-term planning horizon. These decisions 

could be made days to weeks in advance, allowing 

for adequate preparation and resource allocation. 

Strategic Planning: Long-term strategic decisions, 

such as infrastructure upgrades, the procurement 

of new rolling stock, or the implementation of 

significant technological innovations (like AI 

systems), involve extensive planning and 

consultation. The time frame for these decisions 

Deadline

LTTD

If the action is launched after 
the LTTD, its effects will be 
implemented after the deadline

action leadtime
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This concept also applies to decisions 

to be taken once an event has 

occurred. For example, when overload 

alarms are raised once the flows has 

exceeded a given threshold, LTTD are 

defined to act before the dilating effect 

on the cables becomes too dangerous 

and line is automatically switched off, 

meaning that these thresholds are 

defined such that associated LTTD is 

not zero  

Usual timeframes for decision making 

Considering a given delivery time T: 

Real-time: T or after T 

Short-term: from T-3h to T  

Mid-term: one week to 3h before T 

Long-term: several months before T up 

to one year 

Example of decisions depending on 

the different timeframes 

Real-time decisions: implement a 

curative remedial action following an 

alarm for overload 

can range from several months to years, given the 

need for detailed analysis, stakeholder 

engagement, regulatory approval, and financial 

planning. 

In the context of the project, the following elements 

have less priority. 

Regulatory Compliance and Safety Enhancements: 

Decisions related to regulatory compliance or 

major safety enhancements may have varying time 

constraints, depending on the urgency of 

compliance deadlines or the critical nature of the 

safety issue. Planning and implementation could 

span from a few months to several years. 

Investment in Technology and Research: Decisions 

to invest in research and development or to adopt 

new technologies for improving operations or 

customer service can also have a long lead time. 

The exploration, testing, and evaluation phases 

alone can take months or years before a decision 

on full-scale implementation is made. 

Capacity Expansion: Decisions involving capacity 

expansion, such as adding new tracks and stations 

or expanding service areas, require extensive 

planning and are typically made within a horizon of 

several years. These decisions must account for 
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Short-term or mid-term decisions: 

implement a preventive remedial 

action for a forecasted constraint 

Long-term decisions: make a contract 

with a producer to ensure the 

availability of a unit for dispatch 

(months or years in advance). 

future demand projections, environmental impact 

assessments, and community engagement. 
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TIME STEP: WHAT IS THE TIME RESOLUTION FOR ANALYSIS? 
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Depends on the action: 

For tactical phases (flow management by 

tactical ATCO), it is real-time or a few 

minutes. 

For strategic phases, a short-medium-term 

analysis can be applied. 

Real-time analysis 

The analysis is performed based on: 

• Grid models that have a high temporal 

resolution (up to 5min resolution) and 

represent the measured state of the system 

according to this resolution, 

• And/or real-time information from SCADA 

system, e.g., transit flows (usually 5s or 10s 

resolution). 

Short-term to Mid-term analysis 

Analysis is performed based on grid models that 

have an hourly resolution. It must be noted that 

such models are built using various data sources 

that have different time resolution, e.g.: 

• Generation schedules (5min resolution) 

• Interconnection exchange schedules (60min or 

30min resolution) 

• Planned outages 

Mid-term to long-term analysis 

Grid models are created to represent a typical 

situation at a daily/monthly/yearly resolution. 

Real-time or Near-real-time Analysis 

Operational Monitoring and Control: For 

tasks like monitoring train locations, signaling 

status, or track conditions, data may be 

analyzed in real-time or near-real-time, often 

with time steps of seconds or minutes. This 

allows for immediate responses to 

operational changes or emergencies. 

Traffic Management: Managing train 

movements and avoiding conflicts in densely 

trafficked areas require near-real-time 

analysis to make rapid adjustments. 

Short-term Analysis 

Service Performance Analysis: Analyzing 

punctuality, service reliability, and passenger 

flow might be conducted daily or hourly to 

optimize scheduling and resource allocation 

for the following days. 

Maintenance Predictions: Short-term 

maintenance needs, such as identifying 

equipment likely to fail or requiring servicing 
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soon, may use analysis based on daily or 

weekly data. 

Medium-term Analysis 

Demand Forecasting: Predicting passenger or 

freight demand to adjust services or plan for 

special events. Weekly or monthly data might 

be used to identify trends and adjust for 

upcoming periods. 

Resource Planning: Planning for staffing, 

rolling stock availability, and maintenance 

schedules might be performed monthly, 

allowing for adjustments based on projected 

operational needs. 

Long-term Analysis 

Strategic Planning and Investment: Decisions 

related to infrastructure investments, 

expansion plans, or long-term service 

changes may be based on analysis of trends 

and patterns identified in data spanning 

several months to years. 

Safety and Compliance Trends: Analyzing 

safety incidents, compliance with regulations, 

and long-term performance trends might 
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utilize yearly data to inform policy 

adjustments and strategic safety initiatives. 
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IMPLEMENTATION: IS DECISION REAL-TIME OR PLANNED? 
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Planned (pre-tactical or strategic phase) 

In the case of programmed actions (e.g., pre-known 

military areas activation) or other constraints that 

are known in advance and enable planning 

measures. 

Real-time (tactical phase) 

Redirecting traffic flows, either by airline request or 

for safety reasons. 

Operational adjustments derived from: 

• Sudden staff shortages (sickness, fatigue); 

• managing a sudden capacity overload due to 

any problem affecting an adjacent sector or FIR; 

• any emergency with immediate impact on 

traffic flows (e.g., aircraft in an emergency) 

• Reserved/restricted airspace activation 

 

Congestion management often relies on a 

strategy, which is defined as a sequence of 

actions that will set the network topology for 

each timestep. 

Planned Implementation 

In case the constraint is anticipated, and 

lead time for action is important, or a large 

risk can be mitigated. 

Real-Time Implementation 

In all other cases, when flexibilities can be 

activated quickly  

Real-Time Implementation 

Real-time implementation is necessary when 

immediate action is required, usually in 

response to unforeseen events or to manage 

ongoing operations efficiently. This includes: 

Emergency Responses: Implementing safety 

measures, rerouting trains, or adjusting 

operations in response to accidents, failures, 

or natural disasters. 

Operational Adjustments: Making 

immediate changes to train schedules and 

routes or dispatching additional resources in 

response to real-time demand fluctuations 

or minor disruptions. 

System Monitoring and Control: Continuous 

adjustments made by automated systems, 

such as signal control systems or AI-driven 

monitoring tools, to optimize performance 

and safety. 

In the context of the project, following 

elements have less priority. 
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Planned Implementation 

Planned implementation is used for 

decisions that have long-term implications 

and require careful preparation, 

coordination, and resource allocation. This 

approach is characteristic of: 

Infrastructure Projects: Expanding or 

upgrading tracks, stations, or signaling 

systems, which involves detailed planning, 

regulatory approvals, and significant 

investment. 

Strategic Initiatives: Implementing new 

operational strategies, service expansions, or 

major technology overhauls, including the 

integration of AI systems for predictive 

maintenance or operational optimization. 

Maintenance Schedules: Conducting routine 

or major maintenance work, which is 

planned to minimize impact on service and 

ensure resource availability. 

Policy Changes: Implementing new 

regulations, safety protocols, or operational 

policies, which require training, 
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communication, and a phased approach to 

ensure compliance and effectiveness. 
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ACTION TYPE: IS ACTION PREVENTIVE OR CORRECTIVE? 

The goal of this sub-section is to provide the most relevant examples in line with the use case description, keeping in mind what will be of importance 

within the AI4REALNET project. 

Air Traffic  Electricity Railway 

Preventive actions 

Planning the sectors merge/split in 

advance 

Corrective actions 

Re-directing (management) traffic flows 

 

In principle, all actions can be taken in a preventive or 

corrective manner: the choice is made according to 

tradeoffs and relies on general characteristics of actions: 

• Availability of the action 

• LTTD, 

• Costs, 

• Etc. (see tradeoffs and impacts) 

In the context of the project, the actions considered can 

be as follows: 

Topological action 

These actions aim to redirect the energy flow on the 

power grid. It can be of two types: 

• switching on and off power lines between two 

substations 

• reconfiguring the busbar connection on a substation 

level. For instance, a “node splitting” changes the 

number of nodes from 1 node to 2 nodes in a 

substation 

All topological actions are discrete. 

Preventive Actions 

Operational Adjustments: Making 

changes to schedules, routes, or 

operational practices based on predictive 

models to avoid potential congestion, 

delays, or safety risks. 

In the context of the project, following 

elements have less priority. 

Routine Maintenance and Inspections: 

Regularly scheduled checks and 

maintenance of tracks, rolling stock, and 

infrastructure to prevent failures. 

Predictive Maintenance: Using AI and ML 

to analyze data from sensors and systems 

to predict equipment failures before they 

occur, allowing for targeted maintenance 

work. 

Training and Drills: Conducting regular 

training sessions and emergency drills for 



AI4REALNET FRAMEWORK AND USE CASES 
D1.1 

 

314 

 

Air Traffic  Electricity Railway 

Redispatching action  

This action aims at changing the power injection of a 

given flexibility (generator, load, battery, etc.) by 

adjusting the amount of generation output in the grid. 

Renewable energy curtailment 

Limits the power output of a given generation unit to a 

threshold. 

The following actions are listed for context but are not to 

be considered for the project: 

On RTE’s side, in addition to topological actions decided 

and conducted by the operator, topological actions can be 

applied automatically by specific devices. The principle is 

that such devices monitor the flows on given lines and 

apply a predefined corrective action, possibly with 

priorities: for example, 1st topological change, then 

renewable energy curtailment. 

Actions can also include means to increase the number of 

available actions, for example: 

• Delays or cancels planned maintenance (depending 

on consequences): This allows for more network 

switching/reconfiguration. 

staff to ensure preparedness for potential 

incidents. 

Corrective Actions 

Repairs and Replacements: Fixing or 

replacing faulty equipment or 

infrastructure components after a failure 

has been detected. 

Operational Recovery Plans: 

Implementing contingency plans to 

recover from disruptions, such as 

rerouting trains, deploying replacement 

services, or adjusting schedules post-

incident. 

Incident Investigations: Conducting 

thorough investigations following 

accidents or failures to identify the root 

causes and implement measures to 

prevent similar incidents in the future. 

System Upgrades: Upgrading or replacing 

systems and technologies found to be 

inadequate or prone to failure based on 

corrective feedback and incident analyses. 
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• Establish contracts to ensure the availability of units 

for redispatching (usually done in the long-term for 

grid infrastructure projects) 
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SIZE OF ACTION SPACE: WHAT IS THE NUMBER OF POSSIBLE ACTIONS? 

This Section is based on the description of the action space of use cases, and intends to show how complex the decision can be, especially from a 

“human only” perspective: 

Air Traffic  Electricity Railway 

The size of action space depends on the 

three dimensions defining the airspace size 

(lat-lon-altitude extents) and on the 

algorithmic approach.  

The action space of the human ATC staff 

manager is limited and depends on ATCO 

staff availability.  

The action space of the human ATCO 

depends on the number of flights in the 

sector. 

Action space is mixed (discrete and 

continuous). 

The action space is large: e.g., for a network 

with around 100 nodes, it has more than 

• 65 000 different discrete actions, 

• 200 continuous actions 

For example, RTE’s grid is composed of more 

than 25 000 nodes and 10 000 lines. 

Action space is mixed (discrete and continuous). 

While the action space grows linearly with the 

number of trains for the algorithmic part, it 

grows exponentially if there is a central actor 

controlling all the trains. The action space of 

the human dispatcher is, in any case, 

exponentially growing with the number of 

trains.  

For example, SBB operates more than 12,000 

switches and 32,000 signals. In Germany, over 

40,000 regional, long-distance, and freight train 

journeys take place every day. 

Furthermore, the dimensionality of the action 

space depends on infrastructure and timetable 

elements like switches, signals, and scheduled 

stops. Hereby, the impact on the dimensionality 

of the action space depends not only on the 

nature of the actor in the algorithmic part but 

also on the type of task, i.e., if the task is 

tackled episodically or sequentially on the 

algorithmic side.  
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Action space is mixed (discrete and 

continuous). 
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IMPACT OF A DECISION  

Hereafter, a list of questions allows for characterizing the impacts of the decision process and recovery. 

RECOVERY TIME: HOW MUCH TIME TO GET BACK TO NORMAL AFTER A DECISION? 

Air Traffic  Electricity Railway 

In ATM, the recovery time depends on the 

nature of the disruption.  

For instance, if the constraint is caused by 

adverse weather conditions or volcanic 

ashes, the recovery time depends on the 

closing of the abnormal occurrence.  

If the reason is due to military area 

activation, the time window is previously 

known and, therefore, controllable.  

In the case of an immediate change of 

conditions (rerouting a flight, ATCO staff 

shortage), there is no turning back to the 

previous condition. 

Offline time has a direct impact on recovery 

time. 

 

 

 

In power grids, congestion must be relieved in 

a few minutes, otherwise, automatic 

protections are triggered (i.e., the line is 

automatically switched off) to avoid that, the 

problem amplifies and gets out of admissible 

bounds. Few actions might need to be 

coordinated in more complex cases. 

In general, actions can be reverted in a couple 

of hours at most after the overload conditions 

have vanished. 

However, this depends on the complexity of 

the event that triggered the actions or the 

consequences of the decision. 

Note: with regards to system balancing 

management, TSOs are supposed to balance 

the system within a 1h or 30min window, after 

all market trades have been performed. 

The impact of a decision within railway 

operations and the subsequent recovery time can 

vary significantly based on the nature of the 

decision, the specific circumstances surrounding 

it, and the resilience of the railway system. 

Recovery time, or the duration required to return 

to normal operations following a disruption or 

implementation of a significant change, is 

influenced by several factors: 

Nature of the Disruption: The type of event 

leading to a disruption (e.g., technical failure, 

environmental condition, accident) has a major 

impact on recovery time. For instance, recovering 

from a minor signal system glitch might take a 

few hours, whereas repairing damage from a 

severe weather event or an accident could take 

days or even weeks. 

Complexity of Operations: The complexity of the 

railway network and its operations can affect 

recovery time. A highly interconnected system 
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with dense traffic may take longer to recover, as 

disruptions can have cascading effects. 

Availability of Resources: The availability of 

necessary resources, such as repair crews, 

replacement parts, and alternative transportation 

options, can significantly influence recovery time. 

Quick access to resources can expedite recovery, 

while shortages or delays can extend it. 

Effectiveness of Decision-making: The 

effectiveness of the initial decision-making 

process, including the accuracy of forecasts and 

the efficiency of implemented mitigation 

strategies, plays a crucial role in determining 

recovery time. Decisions that effectively 

anticipate and address the core issues can lead to 

faster recovery. 

Resilience of Infrastructure: The resilience of the 

railway infrastructure to withstand disruptions 

affects how quickly operations can normalize. 

Infrastructure designed with redundancy and 

quick repair capabilities can significantly reduce 

recovery time. 

Human Factors: The response of personnel and 

their ability to adapt to and manage disruptions is 

critical. Effective training, clear communication, 
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and strong leadership can enhance recovery 

efforts. 

In the context of the project, the following 

elements have less priority. 

Regulatory and Safety Requirements: 

Compliance with regulatory and safety 

requirements can influence recovery time, as 

certain inspections and approvals may be 

necessary before normal operations can resume. 

Integration with Other Systems: The ability to 

coordinate recovery efforts with other modes of 

transport and systems can affect the recovery 

time, especially for integrated transport 

networks. 

Preparedness and Pre-emptive Measures: 

Systems that have pre-emptive measures in 

place, such as alternative routing plans and pre-

staged resources, can recover more quickly than 

those that do not. 

Public and Stakeholder Communication: 

Effective communication with passengers, freight 

customers, and stakeholders can mitigate the 

impact of disruptions and can be a crucial factor 

in the perceived recovery time. 
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LASTING EFFECTS: WHAT ARE THE POTENTIAL LASTING EFFECTS OF A DECISION? 
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In normal cases, lasting effects are the desired ones 

that led to the decision. The issues are solved, and 

the situation returns to normal. 

Bottleneck issues:  

• delays in investments (upgrades, new 

systems/equipment) 

• delays in regulation, lack of recruitment (to 

replace the retired staff, adaptation of 

operational staff) 

Punctuality 

 

 

 

In normal cases, lasting effects are the 

desired ones that led to the decision, so, 

from a general point of view, the effect will 

be that congestion disappears and flows 

remain within their acceptable limits. 

Undesired consequences can be: 

• Unanticipated side effects leading to 

congestion on other parts of the 

neighboring grid 

• Remedial action unavailable for other 

issues 

• Damage to grid elements, especially 

circuit breaker (the main intrinsic risk of 

using a circuit breaker is to damage it)  

• Inability to perform planned outages (or 

delays) 

The worst case is a decision leading to transit 

flows exceeding admissible limits as defined 

by operational policy (e.g., load shedding).  

Last, it can be possible in theory that 

decisions lead to threats  to the security of 

people (including TSO’s staff): such a 

Operational Efficiency: Decisions that 

improve operational processes, such as the 

adoption of advanced scheduling systems or 

predictive maintenance, can lead to long-

term improvements in efficiency, reducing 

delays and increasing the capacity of the 

railway network. 

Safety Enhancements: Investments in safety 

technologies and practices can have a lasting 

impact on reducing accidents and incidents, 

enhancing the overall safety of the railway 

system for passengers and workers. 

Infrastructure Resilience: Decisions to 

upgrade infrastructure or invest in more 

durable materials can increase the resilience 

of the railway network against 

environmental challenges, reducing the 

frequency and impact of disruptions. 

Customer Satisfaction: Decisions that affect 

the quality of service, such as improvements 

in comfort, punctuality, and information 

provision, can have lasting effects on 

customer satisfaction and loyalty. 
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consequence is the very first thing that any 

decision must avoid. 

 

In the context of the project, the following 

elements have less priority. 

Environmental Impact: Choices regarding 

the adoption of greener technologies, such 

as electrification of tracks or the use of 

energy-efficient trains, can significantly 

reduce the carbon footprint of railway 

operations over the long term. 

Financial Health: Strategic decisions, 

whether related to operational efficiencies, 

expansions, or service offerings, can impact 

the financial health of railway operators, 

affecting their ability to invest in future 

improvements and innovations. 

Regulatory Compliance: Ensuring 

compliance with current and anticipated 

regulatory requirements can mitigate the 

risk of future legal and financial penalties 

while also enhancing safety and operational 

standards. 

Workforce Development: Investments in 

training and development, along with the 

adoption of new technologies, can enhance 

the skills and adaptability of the railway 
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workforce, impacting the quality of 

operations and innovation capacity. 

Technological Advancement: Decisions to 

implement advanced technologies, such as 

AI and IoT, can set a foundation for 

continuous innovation, transforming 

operations, maintenance, and customer 

service in lasting ways. 

Public Perception: The way railway 

operators handle safety, environmental 

concerns, and customer service can 

influence public perception and trust in the 

railway system, affecting ridership and 

public support over the long term. 

Market Position and Competitiveness: 

Strategic decisions can affect the 

competitive position of railway operators 

within the transportation market, 

influencing their ability to attract passengers 

and freight customers in competition with 

other modes of transport. 

Adaptability to Future Challenges: Decisions 

that incorporate flexibility and scalability can 

prepare railway systems to adapt more 

effectively to future challenges, including 
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Air Traffic  Electricity Railway 

technological changes, shifts in demand, and 

regulatory developments. 
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EVALUATION OF A DECISION 

All decisions made regarding a certain context are evaluated ex-post according to certain criteria. In the context of the project, criteria are defined by 

several KPIs in the use cases, that are listed hereafter. 

Category Air Traffic  Electricity Railway 

Technical quality of AI-based 

solutions  

Reduction in Delays 

 

Assistant alert accuracy (or 

Assistant self-awareness) 

Operation score 

Network utilization 

Action recommendation selectivity 

Carbon intensity 

Topological action complexity 

Response time (UC.01) 

Punctuality (UC.01) 

Delay Reduction Efficiency 

 

Quality of AI-based solutions 

perceived by human operators 

Prompt demand rate 

Significance of human 

revisions 

Efficiency score 

Acceptance score 

Agreement score 

Decision Support satisfaction 

Assistant relevance 

Situation awareness 

 

Acceptance score 

Acceptance 

Assistant relevance 

Comprehensibility  

Situation awareness 

 

Human-AI interaction AI co-learning capability 

 

Human control and autonomy over 

the process 

Human control and autonomy over 

the process 
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Category Air Traffic  Electricity Railway 

Human learning 

Decision support for the human 

operator 

Human learning 

Decision support for the human 

operator 

The efficiency of combined human-

AI performance 

 Total decision time 

Ability to anticipate 

Ability to anticipate 

Response time (UC.02) 

Punctuality (UC.02) 

Cognitive load 

 

Workload perception 

Human Response Time 

Workload 

Assistant disturbance 

Human Information Processing 

Robustness AI prediction robustness Technical robustness to real-world 

imperfections 

Resilience to real-world 

imperfections 

Transferability across fidelity levels 

Generalization to different grids 

 

Trustworthiness System Reliability 

Trust in AI solutions score 

Trust towards the AI Tool 

Human motivation 

Trust towards the AI Tool 

Human motivation 
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ANALYSIS OF DECISION-MAKING SCENARIO 

To identify common steps of the decision-making process across all domains, examples of decision-

making scenarios have been described and analyzed for each domain: the aim is to illustrate the 

decision by breaking it down into several steps (as depicted in Figure 41). 

This does not correspond to the use cases that have been defined, but to other scenarios that illustrate 

at best how decisions are made. The analysis of these scenarios has been made during workshops 

where the different elements have been created as post-its and then clustered on a common story 

map (see Figure 42). For each relevant scenario, a short description is provided, and only the relevant 

decision steps. Then, for each decision step, its characteristics are provided. 

The result of this work gave birth to 5 clusters, which can be classified temporally: 

1. Context (environment) 

2. Event and trigger (that necessitate a decision) 

3. Decision exploration 

4. Decision validation / Feedback 

5. Impact and evaluation (of the decision) 

These clusters have led to the definition of the sub-sections of Section 3.1.2, and helped framing the 

5 steps pattern in the abstract base user story of Section 3.2.3.1.6 : context, trigger and three actions. 

Besides, this work has also allowed the identification of interesting components of human-computer 

interactions (HCI) and tasks carried out by the AI assistant. The story map thus displays elements from 

both: 

• Human operator point of view (scenarios elements per domain, HCI), 

• AI assistant point of view. 

In addition to the analysis of the common human operator – AI assistant decision-making process, 

interesting elements of the AI decision exploration steps have been identified, such as the following: 

 

FIGURE 41 - AI DECISION EXPLORATION STEPS EXAMPLE 

   

Anomaly 
detection Sample an action 

and simulate the 
results

Something 
looks strange

I don't 
recognize 

this situation

Try to identify 
the problem

Notify 
human 

operator
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FIGURE 42 - COMMON ANALYSIS OF DECISION-MAKING SCENARIOS 

The different elements on the board are identified by the following colors: 

 

 

 

ATM Electricity railway HCI AI
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AIR TRAFFIC 

Short description of the scenario: the scenario is applicable to both use cases 

List of decision steps for ATM: 

Step Description Type Tradeoffs Time 

constrains 

Implementation Action type 

Shift start Initial 

sectorization 

plan 

- - - - - 

Real-time 

monitoring 

Monitoring 

airspace  

Tactical/pre-

tactical/operational 

- - - - 

New 

constraint#1 

- Adverse 

weather 

report 

Readjust 

operational 

steps 

Tactical/pre-

tactical/operational 

Re-route 

Airspace 

conditional 

management 

Real time Real time Corrective/adaptative 

Process 

constraint#1 

Sectorization 

Routing 

operational Overload 

sectors 

Lower 

capacity 

Real-time Real-time Corrective/adaptative 

New 

constraint#2 

– capacity 

overload risk 

Capacity 

exceeds limits 

Tactical/pre-tactical 

(2h) 

Overload 

sectors 

Pre-tactical 

(2h) 

to 

Tactical (real-

time) 

Before Capacity 

overload 

Adaptative 

Process 

constraint#2 

Sectorization 

adaptation 

Flight re-

routing 

Operational  Capacity vs 

safety 

- Real-time Adaptative 

Return to 

nominal 

conditions 

Normal 

operations 

- - - - - 
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POWER GRID 

Short description of the scenario: handling a new forecasted overload  

Shortly after the beginning of his/her shift in the morning, the operator is made aware that a potential 

overload could occur on a transmission line. 

References: 

• L2RPN challenge, Paris Region AI Challenge for Energy Transition, April 2023 (chapter §4) 

• Work Domain Analysis of Electric Transmission, Networks and Operation, A. Hilliard, R. Brath, 

and G. A. Jamieson https://doi.org/10.1109/JSYST.2023.3339709 

List of decision steps: 

The scenario hereafter is illustrated with a fictious example of business operation context 

Step Description Type Tradeoffs Time 

constrains 

Implementation Action type 

Start 

(08:00AM) 

Beginning of shift: 

previous operator has 

ended his/her shift. 

Planned outage beginning 

at 09.00 requires 2 

actions. 

P1: Change topology in an 

adjacent substation 

P2: Coordinate and 

validate a transit 

limitation with a DSO 

Opportunity to improve 

voltage plan (decrease 

losses) 

- - - - - 

New alert 

forecasted 

at 10:00AM 

A potential overload 

could occur starting at 

10:00 on the line L1. This 

overload, if confirmed, 

needs a remedial action 

(else operational limits 

would be violated) 

Multiple solutions exist. 

- - - - - 

https://www.iledefrance.fr/sites/default/files/medias/2023/05/Description_Challenge_RTE.pdf
https://doi.org/10.1109/JSYST.2023.3339709
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Step Description Type Tradeoffs Time 

constrains 

Implementation Action type 

Processing 

the new 

alert (1) 

Different remedial actions 

are possible 

R1: load transfer from 

DSO (LTTD @08:15) 

R2: change of topology in 

substation S1 (LTTD 

~@09:40) 

R3: limitation of RES 

generation (costly, LTTD 

~@09:50) 

R2 seems the best option 

The operator decides to 

ignore R1 and wait 

Tactical Compliance with the 

operating limits of 

the components of 

the electrical system 

(reconfiguring the 

grid, which can wear 

out components) vs 

maintaining the 

operational safety of 

the power grid 

(overload) 

Long term and 

uncertain events 

(overload) vs complex 

actions (remedial 

actions) 

Next LTTD in 

more than 1 

hour 

Planned Preventive 

Preparing 

the planned 

outage (1) 

The operator prepares 

action P1 for the planned 

outage:  

• Simulation of flows 

with changed 

topology 

• Action list to change 

the topology 

Operational Guaranteeing the 

completion of 

maintenance work 

(planned outage) vs 

maintaining the 

operational safety of 

the power grid 

(forecasted overload) 

Short term and 

certain events 

(planned outage) vs 

longer term and 

uncertain events 

(overload) 

Planned 

outage in 

less than 1 

hour 

Planned Preventive 

Preparing 

the planned 

outage (2) 

The operator prepares 

action P2 for the planned 

outage:  

• Topology with 

simulation of agreed 

load transfer from 

DSO 

• DSO contact 

information 

Operational (see previous step) Planned 

outage in 

less than 1 

hour 

Planned Preventive 

Processing 

the new 

alert (2) 

The operator is evaluating 

another remedial action 

(R4) in the simulation 

tool: Load transfer, LTTD 

@09:30, which is more 

complex than R2, R3 

Tactical Simple actions vs 

complex actions 

Next LTTD in 

less than 1 

hour 

Planned Preventive 
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Step Description Type Tradeoffs Time 

constrains 

Implementation Action type 

Processing 

the new 

alert (3) 

The operator decides to 

ignore R4’s LTTD 

Tactical Simple actions vs 

complex actions 

 Planned Preventive 

Alternative 

end #1 

At 09:45, overload is still 

forecasted 

Given the short time 

remaining and the 

simplicity of R2, the 

operator decides to 

perform R2 

Tactical Compliance with the 

operating limits of 

the components of 

the electrical system 

(reconfiguring the 

grid, which can wear 

out components) vs 

maintaining the 

operational safety of 

the power grid 

(overload) 

Given the short 

timeframe, there is a 

high probability that 

the overload 

happens: wait and 

decide later and rely 

on only one available 

remedial action vs act 

know and rely on 

more remedial 

actions. 

 Planned Preventive 

Alternative 

end #2 

At 09:45, overload is not 

forecasted anymore 

- - - - - 
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RAILWAY 

Short description of the scenario: AI-driven Timetable Creation and Real-time Adjustment for Urban 

Rail Network 

A rail operator implements an AI-based system to autonomously create and adjust train schedules in 

real-time, enhancing efficiency and punctuality across the network. The AI system is designed to 

manage the entire timetable, optimizing for peak and off-peak flows, and dynamically responding to 

delays, equipment failures, or sudden changes in passenger demand. Human intervention is reserved 

for major incidents or complex situations beyond the AI's decision-making capabilities. 

List of decision steps: 

Step Description Type Tradeoffs Time 

constrains 

Implementation Action 

type 

Initial 

Timetable 

Creation 

The AI 

analyzes 

historical data 

and the 

booked trips 

to create an 

optimal 

timetable. 

Strategic Efficiency vs. 

passenger 

needs 

Weeks to 

months 

Planned Preventive 

Real-time 

Monitoring 

Continuous 

monitoring of 

the network 

through 

sensors and 

data sources. 

Operational Real-time 

accuracy vs. 

data overload 

Real-time Real-time Preventive 

Delay Detection The AI detects 

delays and 

analyzes their 

impact. 

Operational Speed of 

response vs. 

accuracy of 

impact analysis 

Immediate Real-time Corrective 

Dynamic 

Timetable 

Adjustments 

The AI 

recalculates 

the timetable 

to minimize 

delay impacts. 

Tactical Optimizing 

network 

efficiency vs. 

minimizing 

passenger 

inconvenience 

Minutes 

to hours 

Real-time Corrective 

Communication 

and 

Implementation 

Automated 

alerts and 

updated 

schedules are 

communicated 

to passengers 

and staff. 

Operational Clarity and 

reach of 

communication 

vs. immediacy 

Immediate 

to short-

term 

Real-time Corrective 
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Step Description Type Tradeoffs Time 

constrains 

Implementation Action 

type 

Major Incident 

Escalation 

The AI 

escalates 

major 

incidents to 

human 

operators with 

data and 

analysis. 

Strategic/Operational AI decision-

making 

capacity vs. 

complexity of 

human 

judgment 

As needed Real-time to 

planned 

Corrective 

Post-Incident 

Analysis and 

Learning 

The AI 

analyzes 

responses to 

improve 

future 

performance. 

Strategic Learning 

accuracy vs. 

operational 

continuity 

Post-

incident 

analysis 

Planned Preventive 

 


