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ABSTRACT

Optimizing the topology of transmission networks using Deep Reinforcement Learning (DRL)
has increasingly come into focus. Various DRL agents have been proposed, which are mostly
benchmarked on the Grid2Op environment from the Learning to Run a Power Network (L2RPN)
challenges. The environments have many advantages with their realistic grid scenarios and underlying
power flow backends. However, the interpretation of agent survival or failure is not always clear,
as there are a variety of potential causes. In this work, we focus on the failures of the power grid
simulation to identify patterns and detect them in advance. We collect the failed scenarios of three
different agents on the WCCI 2022 L2RPN environment, totaling about 40k data points. By clustering,
we are able to detect five distinct clusters, identifying common failure types. Further, we propose a
multi-class prediction approach to detect failures beforehand and evaluate five different prediction
models. Here, the Light Gradient-Boosting Machine (LightGBM) shows the best failure prediction
performance, with an accuracy of 82%. It also accurately classifies whether a the grid survives or
fails in 87% of cases. Finally, we provide a detailed feature importance analysis that identifies critical
features and regions in the grid.

Keywords Electricity Grids · Learning to Run a Power Network · Clustering · Forecasting · Deep
Learning · Reinforcement Learning · Topology Optimization

1 Introduction

With the increase of renewables in the energy mix and the resulting variability, the optimization of power grids has
become increasingly complex. One possible approach is topology optimization, i.e., switching buses at a substation
level, which is a more cost-effective alternative to redispatching [22] and can improve grid stability [4]. However,
identifying the correct topology options is computationally expensive [22]. One possible solution for the topology
optimization could be DRL, as it can grasp large states and cope with the complexity [29].

Within the Machine Learning (ML) research community, the L2RPN challenges are the preferred research benchmarks
[17, 24, 23, 22, 28]. The underlying Grid2Op package of the Transmission System Operator (TSO) RTE provides
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several environments for DRL approaches.4 Within the environments, researchers train their agents on various chronics,
which are scenarios containing one week of power grid data, including generator injections, load consumption, and
structural information like planned outages and unexpected hazards, to identify effective policies. To rate agents, a
scoring function is provided [23], which depends on the agent’s ability to maintain grid stability for a week in the test
chronics. Several topology-based DRL agents have been applied to the L2RPN challenges of RTE in the last years
[22]. However, it is not always clear why an agent survives or fails in a specific chronic, as the environments contain
stochastic components that change the behavior on repeated runs. Therefore, we analyze different grid failures in the
IEEE118 grid and provide a predictive approach to detect possible failures in advance.

2 Contribution

We take a closer look at agent failures to address the types of failures that can occur when using a topology-based agent.
To do so, we aggregate the data of over 40k failed chronics from three different agents and cluster the failure types to
identify specific patterns.

Next to clustering, we provide a multi-class prediction framework to identify whether an agent is currently in a situation
where survival can be ensured, or if failure is imminent. Based on the observation of the grid state, we can detect
whether the grid will survive or if a failure will occur in 5, 3, or 1 time-steps, corresponding to 25, 15, and 5 minutes
respectively. We test different prediction models and are able to identify with 87% binary accuracy, whether grid failure
is imminent. With a detailed feature importance analysis, we are further able to detect critical features and components
in the electricity grid that are crucial for failure prediction. Overall, the contributions can be summarized as follows:

• We evaluate three agents from Ref. [19] with ten different seeds on the IEEE118 grid (WCCI L2RPN training
environment). With 1662 chronics, we create a detailed dataset of around 40k grid failures.

• We perform a clustering analysis that identifies distinct grid failure types and categorize them into five
meaningful clusters, enhancing understanding of agents’ shortcomings and their association with specific
failure types.

• We build a multi-class forecasting framework to identify the risk of failure beforehand.

• We test five different forecasting models and identify the LightGBM as the best performing candidate.
• With an additional feature importance analysis, we are able to identify critical features and regions within the

IEEE118 grid.

The rest of the paper is structured as follows. We provide an overview of the related work in Section 3 and our
methodology in Section 4. We then present the experimental setup in Section 5, followed by the results in Section 6.
Finally, we discuss our results in Section 7 and conclude in Section 8.

3 Related Work

With the L2RPN challenges, several approaches have been proposed to optimize the topology of transmission grids
with DRL. In most cases, the DRL algorithms are combined with heuristic components [5, 11, 19, 20] to increase
performance and reduce the action space. Other researchers prefer to use evolutionary algorithms with planning
components [31] or Monte Carlo Tree Search (MCTS) [10]. Additionally, some approaches use Graph Neural Networks
(GNNs) to represent the graph-structured state information [12]. However, most researchers report only the score and in
some cases the survival of their agent on the test chronics. Understandably, they often do not show the shortcomings of
their agents, making comparisons or even fault interpretation difficult. The most detailed analysis of the environments
and agents comes from the L2RPN challenges themselves, e.g., in [23, 25]. They analyze the behavior of different
agents and also show some examples using the Grid2Viz package.5 Alternatively, [3] introduce Grid2Onto for Grid2Op
environments. Their application is a recommender system based on a semantic model to display and select propositions
from an agent for the respective grids.

With respect to fault prediction, previous studies have investigated electricity grids, as evidenced by the surveys for
transmission grids [6] and distribution grids [8]. However, to the best of our knowledge, there is no specific work on
fault prediction using DRL agents for topology optimization. The closest work was done by [26], who used an LSTM
model to predict failures on the IEEE 35 bus network. However, they focus more on interlocking and cascading failures
and not directly on the outcome of DRL agents. Therefore, there is still a need for further research in this area.

4Grid2Op: https://grid2op.readthedocs.io/en/latest/ (last accessed 09/06/2024).
5Grid2Viz https://github.com/rte-france/grid2viz (last accessed 09/06/2024).
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4 Methodology

4.1 Descriptive Analysis with Clustering

In the descriptive analysis, we want to identify different types of grid failures to better understand the shortcomings
of the agents. However, the underlying data is high-dimensional and requires reduction. To ensure that we have less
correlation in our clustering, we use the Principal Component Analysis (PCA) [1] with standardized variables. The
dimensionality is reduced by transforming the data onto the coordinate system of the principal components, which are
orthogonal to each other. We then select all major components that added at least 5% of the variance to the data, thus
reducing the dimensions effectively. In our case, this yields six components with an explained variance of 85%.
With a reduced number of components, we combine the PCA with k-means clustering, similar to [9]. Introduced by
[21], k-means clustering divides the data into k-clusters, where each data point is assigned to the nearest cluster centroid
based on its distance. By iteratively assigning precise centroids, the distances within the cluster is minimized. Since the
cluster size k has to be chosen, we iterate over different sizes and choose the cluster size based on the inertia and the
silhouette metric [18].

4.2 Forecasting Models

In our forecasting framework, we go beyond a binary prediction of failure versus non-failure of the grid. Instead, we
adopt a multi-class approach, forecasting potential failures at three distinct time steps before they occur, namely five,
three and one time-steps ahead. This allows for a more granular understanding of the impending failures and provide
insights into the decision-making of the models such as the average probability distribution among all classes. We
employ the following five prediction models and compare their performance. In particular, we utilize gradient boosting
techniques for their strong performance across various prediction tasks and their ability to easily provide insights into
feature importance.

Random Forest (RF) [13] is an ensemble learning method that constructs simple decision trees during training and
outputs the majority vote of their predictions for classification tasks. This approach enhances model accuracy
and robustness by reducing overfitting and improving generalization compared to individual decision trees.

Extreme Gradient Boosting (XGBoost) [7] uses gradient boosting to iteratively build decision trees, such that each
new tree is trained to correct the residual errors of all previous trees. It employs advanced techniques like
regularization, weighted quantile sketch, and sparsity awareness to improve model accuracy, prevent overfitting,
and handle large datasets efficiently.

LightGBM [16] is an ensemble learning method for classification that builds decision trees using a gradient boosting
framework, optimizing for speed and memory efficiency. Unlike XGBoost, LightGBM uses a histogram-based
algorithm and leaf-wise tree growth, which significantly enhances training speed and reduces memory usage,
especially for large datasets.

Category Embedding Model (CEM) [14] is a basic yet effective feed-forward neural network. Its architecture
integrates categorical features through a learnable embedding layer, making it a suitable starting point and
baseline for comparison with other models.

GANDALF [15] stands for Gated Adaptive Network for Deep Automated Learning of Features and optimizes feature
selection and engineering using Gated Feature Learning Units (GFLU). GFLU leverages a gating mechanism
to iteratively refine feature representations and filter out noisy data, as well as utilizes stage-specific feature
masks, allowing for hierarchical and adaptive feature selection. This results in a robust feature representation,
which is then used by an Feed-forward Neural Network (FNN) to produce final predictions [15].

For the hyperparameter tuning of all models, Optuna [2] is employed to facilitate an efficient hyperparameter search.
We utilize Tree-structured Parzen Estimator (TPE) [30] as our optimization method, as it maintains two probability
distributions: one for good configurations and another for all sampled configurations. By focusing on promising regions
of the hyperparameter space, TPE directs the search more efficiently than traditional methods like grid or random
search.

3



Fault Detection for agents on power grid topology optimization: A Comprehensive analysis

5 Experimental Setting

5.1 Agents

In order to provide a comprehensive analysis of agent failures, it is essential to look at different agents. While there are
numerous agents available for consideration, we decided to use the agents of [19] since their data was already available
to us. The three agents in question are:

Do-Nothing Agent (DoNothing) The first agent does not interfere with the grid and only provides DoNothing actions.
This agent is considered the baseline and we expect a lot more failures from it.

Senior Agent (Senior95%) This agent is based on the CurriculumAgent [20], which selects topology actions on
individual substations, when the threshold of ρmax,t >= 0.95 is breached. The agent further includes rule-
based components, such as periodic reversion to the starting topology [19, 20] and line reconnection. The
agent is more advanced, but changes the substations quite often in uncertain events.

Topology Agent (TopoAgent85−95%) The last agent is an extension of the Senior95% and is described in detail in
[19]. The main difference is that the agent searches for overall suitable Target Topologies (TTs) when the
ρmax,t is in the interval of 0.85 < ρtopo < 0.95. In [19], the TopoAgent85−95% was able to achieve better
results, thus we expect differences to the Senior95%.

5.2 General Data Collection

To ensure a in-depth analysis, it is useful to look at a wide range of different environment scenarios. For this reason, we
chose the WCCI 2022 L2RPN environment [27], with a total of 1662 chronics. These chronics are created with an
expected electricity mix of 2050, i.e. with only 3% fossil fuels remaining in the electricity mix [27], so more variability
is expected. Given the stochastic components of the environment, we run each chronic a total of 10 times with different
master seeds for each agent.6 Afterwards, the failed chronics were selected.

Cluster Data: For the clustering approach, we want to compare the observation of the failure with the initial situation
of the environment. Thus, we collected the observation at the start of each chronic obst=0 and one time step before
failure obst=n−1. Since each observation has 4295 variables, we aggregate the variables. First, since line capacity ρ
is an important indicator of grid stability, we collect the maximum and average line capacity ρmax and ρmean of the
obst=n−1. Additionally, we counted the number of disconnected lines #linesdis and the total tsoverflow, representing
the cumulative duration during which the lines l ∈ L have been in an overflown state (ρl ≥ 1.0). Second, we account for
the number of substation changes #subchanged, by comparing the switched substations to obst=0. Third, it is necessary
to account for the different power flow changes in the grid. For the load consumption, the generator injections, and both
sides of the lines (origin and extremity), we record the maximal active load value (loadpmax, gen

p
max, line

ex,p
max, line

or,p
max)

and the average value (loadpmean, gen
p
mean, line

ex,p
mean, line

or,p
mean) as a fraction to the first observation obst=0.7 The

fraction is calculated for the loads, generators, and lines. As an example, we show the calculation for the loadpmax and
loadpmean with γ being one load in the set of all loads γ ∈ Γ:

loadpmax = max
γ∈Γ

[
loadpγ,t=n−1/load

p
γ,t=0

]
− 1 (1)

loadpmean =
1

|Γ|

Γ∑
γ=0

(loadpγ,t=n−1/load
p
γ,t=0)− 1 (2)

Next to the cluster variables, we also collected the survival times (tsurvived) as well as other descriptive variables for
our analysis.

Forecasting Data: For the forecast, we distinguish between failure and survival scenarios. For failures, we focus
on observations at time steps t = n − 1, t = n − 3, and t = n − 5, with n being the failed time step. For survived
observations, we sample from the chronics observations with a high ρmax,t. However, to avoid overlapping, the
obst=survived must be at least n − 6 away from the failed time step. To avoid data leakage, we split the chronics

6To ensure that there was no cherry picking, we chose the ten seeds completely random using np.seed(8888). For each seed, we
also calculated the _statistics_l2rpn_dn and _statistics_l2rpn_no_overflow_reco$ separately.

7We excluded reactive power flow and voltage angle due to high correlation with active power flow or constant values. Elements
with a zero in obst=0 were also excluded to avoid mathematical errors. See appendix table 4 for a summary of all variables.
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beforehand into train, validation, and test sets, ensuring that no earlier data point from the test or validation set is found
in the training set. This approach yielded 189 563 observations, with half of those surviving (obst=survived), and the
remaining half is split evenly among obst=n−1, obst=n−3, and obst=n−5. Subsequently, through the sampling different
chronics, the data was divided into a training set of size 152 234, a validation set of size 18 881, and a testing set of size
18 448. Thanks to the courtesy of RTE, the validation environment of the WCCI 2022 challenge was made available to
us. Consequently, our findings can also be validated on an out-of-distribution (OOD) sample of size 6036.

5.3 Metrics

We evaluate the performance of our prediction models using several key metrics. First, we include the Accuracy,
which is the ratio of correctly predicted instances to the total instances. This is the metric on which all models are
trained. Further, with the multi-class classification problem, we also include the Balanced Accuracy to address the
imbalance in the data sets. It is defined as the average of recall obtained for each class. The F1 score, which can be
interpreted as a harmonic mean of precision and recall, reaches its best value at 1 and worst score at 0. For our specific
use-case, we also want to measure the Binary Accuracy. This metric is defined by the accuracy of the one-vs-all model
that categorizes all failures into a single class and survival into another. It effectively assessing the model’s ability to
distinguish between survival and failure observations.

6 Results

6.1 Clustering Results

Cluster Identification: With the aggregated clustering data, we perform PCA and select six principal components,
describing 85% of the variance. Afterwards, we execute the k-means clustering and identify five clusters as the best
cluster size for our data.8 Subsequently, the clusters are grouped and the statistical components, including the mean,
median, and quantiles of the variables, are analyzed to identify the distinctive characteristics of the clusters. We provide
in Table 1 the mean values of all cluster variables. The following clusters were identified:

1. Changed Topology: This cluster has the highest #subchanged among all clusters.

2. Decreased Load Consumption: In this cluster the distinct characteristic is the lower load consumption of
loadpmean and loadpmax.

3. Disconnected Power Lines: With the highest tsoverflow, #linesdis and ρmax this cluster is directly linked to
the overload of the power lines.

4. Increased Generator Injections: This cluster has by far the highest generator values of genp
mean and genp

max.

5. Increased Power Flow on Power Lines: As the last cluster we identify the highest power flow in
lineex,pmax, line

or,p
max, line

ex,p
mean and lineor,pmean as distinct feature.

Interestingly, we can see in Figure 1 that the clusters Increased Generator Injections and Disconnected Power Lines
have distinct observations that can clearly be separated from the other clusters. In contrast, there seems to be multiple
clusters with an increased #subchanged. With respect to Table 1, several noteworthy observations can be made. First,
there appears to be a significant increase in generator output in the fourth cluster, with a factor of up to 125 times
the genp

mean. Given that the relative change to t = 0 in active power is compared, it can be explained that some
generators only produce a minor amount at t = 0 due to the fact that all scenarios start at nighttime. Secondly, it can
be observed that the only instance of a decrease in the mean values can be found in the second cluster with loadpmean.
Given Kirchhoff’s current law, i.e., the aggregated loads always have correspond to the aggregate generation in the
whole grid, the lower loadpmean can only show localized imbalances in parts of the grid.

Cluster distribution across Agents: Following the general description of the clusters, we are interested in the
distribution across the agents, as seen in Table 2. First, we see that Changed Topology and Disconnected Power Lines
are quite large containing 39% and 30% of the data, while the Increased Generator Injections only has a total of 405
samples. With the χ2 independence test (α = 0.05), we tested the H0-hypothesis that the clusters and agents are
independent from each other. We could clearly reject the hypothesis with a p− value of 0.0, which is a very strong
indication that there is an association between clusters and agents. Comparing the clusters with the agents, we can
see that a large portion of the DoNothing failures are due to the disconnection of power lines (56%) as well as the
reduced load consumption (26%). In contrast, the Senior95% and TopoAgent85−95% have most of their failures in the

8The plot of both inertia and silhouette can be found in the appendix figure 7.
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Table 1: Mean values of the clustering variables, grouped by one of the five clusters. Based on multiple statistical characteristics,
we name the clusters accordingly. We highlight the highest mean value of each variable.

Cluster Changed
Topology

Decreased
Load

Consumption

Disconnected
Power Lines

Increased
Generator
Injections

Increased
Power Flow

on Power Lines

tsoverflow 5.32 6.89 12.60 10.32 9.96
#linesdis 0.79 1.58 3.93 1.37 2.12
#subchanged 5.54 1.71 0.92 2.94 3.57
ρmax 1.03 1.13 1.43 1.25 1.24
ρmean 0.40 0.38 0.36 0.41 0.38
loadpmax 0.33 0.09 0.35 0.34 0.34
loadpmean 0.12 -0.06 0.13 0.14 0.13
genp

max 4.78 2.69 3.66 614.55 2.31
genp

mean 0.27 0.10 0.08 125.29 -0.07
lineex,pmax 0.51 0.21 0.60 0.58 1.33
lineex,pmean 19.16 12.24 22.07 19.56 106.85
lineor,pmax 0.51 0.20 0.61 0.58 1.33
lineor,pmean 18.96 12.27 22.44 19.10 108.58

Table 2: Quantity and Frequency of failures in the clusters for the three agents. We denote the number of occurrences per cluster
and the percentage within brackets. We highlight for each agent the most frequent cluster. Note that the amount of failure data across
the agents differs.

DoNothing Senior95% TopoAgent85−95% Total

Changed
Topology 1573 (10%) 7191 (61%) 6676 (58%) 15440 (39%)

Decreased Load
Consumption 4345 (26%) 2239 (19%) 2508 (22%) 9092 (23%)

Disconnected
Power Lines 9225 (56%) 1360 (12%) 1424 (12%) 12009 (30%)

Increased Generator
Injections 178 (1%) 121 (1%) 106 (1%) 405(1%)

Increased Power
Flow on Power Lines 1153 (7%) 784 (7%) 752 (7%) 2689 (7%)

Total # Obs 16.474 11.695 11.466 39.635

topology cluster. Here, the TopoAgent85−95% has with 58% fewer topology failures, compared to the Senior95%’s
61%. Instead, the TopoAgent85−95% has 3% more load consumption errors than the Senior95%.

Cluster Survival Time: Besides the distribution across the agents, we are also interested in the survival time. In
Figure 2 we visualize the number of steps until failure with tsurvived and observe a clear difference between clusters.
The Increased Generator Injections cluster fails incredibly fast, with a median survival time of only half a day (one day
equals 288 steps). The median of the Decreased Load Consumption cluster is a little better. As contrast, we see that the
Changed Topology cluster has the longest survival time with a median value of 496 steps, which might be related to
the capabilities of the TopoAgent85−95% and Senior95%. For the two remaining cluster, we have a relatively similar
distribution, which is understandable since both focus on line results.

6.2 Forecasting Results

Quantitative forecasting results: In Table 3, we present the performance of all evaluated models with regard to the
defined metrics of Section 5.3. LightGBM outperformed the other models across all metrics, achieving an accuracy
of 82% and a high binary accuracy for predicting survival vs. failure of 87%. Interestingly, the performance remains
consistent across both test and OOD data, with binary accuracy also holding steady at 87%, indicating no data leakage
and robust generalization to novel scenarios. In second place, the other gradient boosting approach XGBoost achieved a
relatively good performance, however, it was not able to reach that of LightGBM.

Compared to the gradient boosting approaches, the neural network-based methods CEM and Gated Adaptive Network
for Deep Automated Learning of Features (GANDALF) perform very similarly and achieve an accuracy approximately

6



Fault Detection for agents on power grid topology optimization: A Comprehensive analysis

Cluster Types Decreased Load Consumption Increased Power Flow on Power Lines

Disconnected Power Lines Changed Topology Increased Generator Injections

Figure 1: 3D visualization of the five clusters, where each point represents a failure of the agents. The axis in the plot are the
genp

mean on the y-axis, #linesdis on the x-axis and #subchanged as z-axis. The points are colored according to their respective
clusters.

0 288 576 864 1152 1440 1728 2016

 Median survival time : 146.0

 Median survival time : 496.0

 Median survival time : 399.0

 Median survival time : 407.0

 Median survival time : 253.5

Cluster Types Decreased Load Consumption Increased Power Flow on Power Lines Disconnected Power Lines

Changed Topology Increased Generator Injections

Survival Times

C
lu

s
t
e
r

Figure 2: Box plot of the survival time tsurvived of each cluster. We further report the median survival time. The ticks on the
x-axis correspond to a full day, e.g., 288 steps. Note that an agent must survive a total of 2016 time steps to complete the chronics
successfully.

3% lower than LightGBM. Interestingly, both achieve a high accuracy for the binary problem of predicting survival vs.
failure, outperforming XGBoost. It is also notable that both neural network-based methods achieve overall similar scores
on both the test dataset and the OOD dataset. However, the scores are still lower than those achieved by LightGBM but
comparable to XGBoost. Therefore, the GANDALF architecture did not achieve a higher performance than the CEM
model, though it is more complex. In the last place is RF, which performed the worst across all metrics. With regards to
the imbalanced nature of the data, it is important to also look at the balanced accuracy and the f1 scores. As expected,
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Table 3: Forecasting results of the different models on the hold-out test data. The last two columns show the balanced accuracy and
binary accuracy results on the OOD test data.

accuracy balanced
accuracy f1 micro binary

accuracy
OOD balanced

accuracy
OOD binary

accuracy

RF 0.73 0.62 0.73 0.82 0.61 0.82
XGBoost 0.80 0.73 0.80 0.83 0.73 0.83
LightGBM 0.82 0.76 0.82 0.87 0.76 0.87
CEM 0.79 0.73 0.79 0.84 0.73 0.84
GANDALF 0.79 0.72 0.79 0.84 0.72 0.83

we observe a decrease in balanced accuracy compared to the regular accuracy score. All models except RF exhibit a
deviation of approximately 6%.

Qualitative Forecasting result: We take a closer look at the probability distribution of the best-performing model
LightGBM. Figure 3 shows the averaged probability output of the model against the ground truth of all four classes. As
we can see, the model selects the correct classification on average and is especially sure in the cases of survival, i.e.,
obssurvived with 90%, and imminent failure, i.e., obst=n−1 with 81%. In the case of obst=n−5 we can see uncertainty
in the model, since the model selects the surviving obst=survived in 38% of the cases. This shows that it is difficult to
distinguish obst=n−5 from a surviving observation, as it takes only a sudden change, such as an adversarial attack, to
destabilize the grid very quickly. This can be observed for later timesteps as well, although to a lesser degree.

Feature Importance : As a last result, we examine the feature importance of the LightGBM model. For this we use
the gain metric, which represents the improvement in accuracy brought by a feature to the branch. By evaluating the
gain, we identify which features contribute the most to the model’s predictions, allowing for a better understanding of
the underlying patterns and relationships within the data. With respect to the features of the LightGBM, we look at the
top 30 features, visualized in Figure 4. We group the features based on their type and distinguish among descriptive,
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Figure 3: Average probability distribution of LightGBM for the ground truth of obst=survived, obst=n−5, obst=n−3 and obst=n−1.
The probability output is averaged for all observations. Black lines visualizes the kernel density estimation across the classes.
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Figure 4: Feature importance of the 30 most important features according to the LightGBM model. The color indicates the type of
variable.

generator, load, and line features (power flow, cooldown, tsoverflow, maintenance). Beginning with the interpretation
of these results, we observe that 16 of the most important features are of type tsoverflow which denotes the number of
time steps since the power line has ρl ≥ 1.0. This is not surprising, since overloaded lines are a strong indicator for
an unstable grid. However, we also have three important descriptive features (current_step, minute_of_hour, and
hour_of_day). These suggest that the likelihood of power grid failures is influenced by temporal features, reflecting
patterns that may correlate with daily operational cycles or varying demand. Another important descriptive feature is
the agent type in 17th place, since there is a clear difference in behavior between the TopoAgent85−95%, Senior95%
and the DoNothing in terms of survival. It is plausible that some grid states would lead to a failure without remedial
action, but an agent applying topological fixes could prevent this. Regarding the loads and generators, we can see that
the first generator feature appears at position 10, while the first load feature appears only at position 27. This is quite
interesting, considering that the decreased load cluster is relatively frequent. It is possible that the grid’s stability is
more dependent on the fluctuating nature of largely weather-dependent renewable generators than on loads. Examining
the overall picture, it is unsurprising that the feature importance is dominated by line features. Moreover, many features
correspond to the same lines. For instance, three distinct features corresponding to line 175 appear among the top 30
importance values alone. To simplify the interpretation of feature importance and to better understand the broader
impacts of different types of grid components, we aggregated the feature importance values by averaging the importance
values of related features. The results of the aggregation are visualized in Figure 5, where we display the ten most
important lines, generators and loads of the grid.

In the first region (A) we have two loads and a line of high importance. By looking at the failures we could identify
the line between substations 21 and 22 as reason, as it is often targeted by the adversarial agent. This attack is a
certain failure because the demand of the loads cannot be changed and the only generator that provides electricity is in
substation 18. This causes an overflow in all the lines between substations 18 and 21, leading to a cascading failure in
less than 3 steps. Thus, by disconnecting the line, the adversarial agent causes a failure, which to our surprise is very
common with 4057 out of 39635 cases.

Region (B) highlights the connection between two sub-grids: the line between substations 68 and 76 connects the
upper right sub-grid to a major substation in the bottom right sub-grid. The most important generator 37 connects to
substation 68 and frequently injects up to 500% of its starting power. Furthermore, substation 76 is connected to the
central substation 79 with two lines, indicating an increased power flow and overall significance of this connection.
Accordingly, these lines are deemed as very important by the prediction model. Both substations are very important
since all power flow to the majority of this sub-grid have to be routed through them, hence they serve as the entry point
to this part of the grid. Additionally, two other paths (80-67-64 or 80-67-68) from substation 79 to the upper right
sub-grid have to traverse substation 80, hence the connection between 79 and 80 is also considered very important by
the model. Overall, region (B) can be characterized as a high line power flow region, having 3 important generators (37,
42 and 43) in the vicinity, connecting two sub-grids, and being the only entry point to the bottom right area of the grid.

9
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91
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144
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Figure 5: Top 10 important lines (red), generators (green), and loads (yellow) for failure prediction. The numbers on the marked
lines correspond to the line ids of Figure 4. Sub-grids are separated with dotted lines. For better clarity, we grayed out the less
important elements of the grid and highlighted 3 significant regions (A,B,C) of important grid features.

Region (C) marks a section of the grid where frequent line attacks by the adversarial agent occur. In fact, 10 out of
23 possible line attacks happen in this sub-grid with 5 line attacks in region (C) alone. Both the lines connecting
substations 58 to 62 and 62 to 63 are part of the attacked lines, leading to a higher load on the other lines connecting the
group of substations (59, 60, 61, 63, 64, 65, 66) in the lower area of this sub-grid. Namely, these are the lines connecting
substation 58 to 59 and 60, respectively, as correctly identified by the importance of the model. Moreover, three out of
the ten most important loads are present in this region, connected at substations 50, 52, and 56, respectively. In order to
supply these loads, a high load and importance at the lines connecting these loads to bigger substations is to be expected.
This is exacerbated by the fact that the lines connecting substation 48 to 50 and substation 48 to 53 can be attacked,
leaving less possible paths to these loads available.

7 Discussion

Looking at the results, we can see that the clustering was quite successful. We were able to identify at least two of the
five clusters that are highly correlated with the agents, confirming our expectations. Moreover, both advanced agents
were able to significantly reduce the number of failures due to line disconnection. Since the TopoAgent85−95% has
slightly less errors due to topology changes, we can also confirm [19]. In terms of the remaining clusters, the results are
not as clear. For the line and generator clusters, we have very similar cluster sizes across all agents. For the load cluster,
we could at least observe a slight reduction for the advanced agents. Overall, the results indicate that there is still a lot
of optimization potential, requiring additional redispatching optimization. With the feature importance, we were also
able to detect the design error in region (A) of Fig. 5, showing a possible requirement to incorporate load shedding in
future action spaces of Grid2Op. Agents should focus on preventing the disconnection of this line due to overflows at
all cost by performing suitable remedial actions in a timely manner. With respect to our predictive models, we were able
to achieve an accuracy of 82%, showing that model correctly detect possible failures in the gird in most cases. More
importantly, the binary accuracy of 87% showed, that we are able to correctly detect whether the agent is struggling in
the grid. This makes the real-world applicability more interesting, as we can alert the operator in time, with obst=n−5

corresponding to 25min before failure. As future work, improving the performance of the failure prediction could
be achieved by utilizing GNNs to capture the inherent graph structure present in the power grid topology. Further, a
continuous analysis should be conducted that includes redispatching components to target the reduced load cluster by
actively adjusting redispatch and curtailment. Furthermore, it might be interesting to focus on the specific regions of
the grid that received high feature importance, as they seem to be responsible for the performance of the agents. This
could be achieved by specifically training the DRL agent on these regions, or even a hierarchical approach. Including
topological actions that specifically target these regions into the action space might bring a boost in performance as

10
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well. Finally, the prediction of failures has a potential in guiding decisions on when a DRL agent should take remedial
actions based on them, rather than fixed thresholds of maximum line capacity ρmax,t.

8 Conclusion

In this paper, we provide a detailed failure analysis on the WCCI L2RPN environment, which has not been done to
this extent yet. We examined the failures in the grid of three different agents across ten seeds, resulting in 40k data
points. Our analysis is twofold, with a detailed cluster analysis and a prediction of the failures in advance. For the
cluster analysis, we were able to identify five specific clusters that showed distinct causes for the failures. The failures
exhibited varying survival times and could be attributed to some extend to specific agents. As a second part, we propose
a multi-class forecasting approach to detect the failures ahead of time. On the data we tested five different model types
and found the LightGBM to be the most suitable model for the prediction. The feature importance afterwards revealed
critical regions of the grid that could be specifically targeted in future work.
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9 Appendix

9.1 Cluster Variables

We summarize the distribution of the cluster variables in the following Table 4.

Name Explanation mean std min 25% 50% 75% max

tsoverflow
Cumulative

overflow time 8.25 6.78 0.0 3.0 6.0 12.0 71.0

#linesdis
Number of

disconnected lines 2.02 2.27 0.0 0.0 1.0 3.0 20.0

#subchanged
Number of changed

Substations 3.10 4.63 0.0 0.0 1.0 4.0 34.0

ρmax Max line capacity 1.19 0.28 0.61 1.03 1.11 1.33 2.0
ρmean Mean line capacity 0.38 0.06 0.19 0.33 0.38 0.42 0.63

loadpmax
Max active load

value of consumption 0.28 0.14 -0.14 0.22 0.30 0.37 0.88

loadpmean
Mean active load

value of consumption 0.08 0.10 -0.26 0.04 0.11 0.15 0.32

genp
max

Max active production
value of genreators 10.03 70.03 -0.48 0.79 1.67 3.27 1573.0

genp
mean

Mean active production
value of genreators 1.43 13.40 -0.98 -0.24 -0.0 0.30 224.02

lineex,pmax
Max active power

flow at line extremity 0.52 0.39 -0.22 0.24 0.46 0.73 4.60

lineex,pmean
Mean active power

flow at line extremity 24.41 32.13 0.24 8.60 15.89 27.25 696.11

lineor,pmax
Max active power
flow at line origin 0.53 0.39 -0.22 0.24 0.46 0.74 5.64

lineor,pmean
Mean active power
flow at line origin 24.56 33.86 0.23 8.57 15.84 27.15 730.49

tsurvived Survival Times 539.87 470.42 2.0 147.0 407.0 804.0 2016.0
Table 4: Variables for clustering. Note that tsurvived is not included in the clustering and is just reported to showcase the
distribution.

Correlation of cluster variables: When looking at the correlation plot in Figure 6, there are already three inter-
esting things to note. First, we see a high correlation in the power flow values between the maximum and average
components, which is relatively self-explanatory. Second, we can see that the load values are somewhat correlated to
lineex,pmax, line

or,p
max. Interestingly, the generator values are not correlated with the line power flow in any way. Third,

we see a negative correlation between #subchanged and #linesdis, which can be explained by the fact that both the
Senior95% and TopoAgent85−95% agents have components that automatically reconnect lines. However, #linesdis
is also negatively correlated with ρmax, which is counter-intuitive. A possible explanation could be the Grid2Op rule
that disconnects a line after three consecutive time steps of overload. When the line is disconnected, the highest ρmax

is no longer available, explaining the negative correlation. This explanation would primarily hold for consecutive
observations, so it is quite interesting that it seems to work across multiple scenarios.

9.2 Inertia and Silhouette plot

The plot below (Fig. 7) illustrates the inertia values for different cluster sizes in our k-means clustering analysis,
showcasing the selection process for determining the optimal number of clusters based on the elbow method and the
corresponding decrease in inertia.

9.3 Additional Information

Error Statement We collected the error statement of every failed scenario to see, whether we could detect a pattern.
The following three error statements were outputted by the underlying Grid2Op solver lightsim2grid:
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1 0.19 −0.03 0.66 0.3 0.03 0.08 0.02 0.03 0.22 0.1 0.21 0.07

0.19 1 −0.28 0.43 −0.33 0.12 0.04 −0.02 −0.03 0.09 0.04 0.1 0.06

−0.03 −0.28 1 −0.19 0.33 0.07 0.08 0 0 0.19 0.05 0.17 0.03
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0.22 0.09 0.19 0.13 0.06 0.4 0.39 0.01 0.01 1 0.7 0.91 0.52
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0.21 0.1 0.17 0.12 0.02 0.41 0.4 0.01 0.01 0.91 0.56 1 0.69
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Figure 6: Correlation plot of the different cluster variables. The color range depicts the correlation values that go from
-1.0 (blue) to 1.0 (yellow).
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1. Grid2OpException Divergingpower flow "Divergence of DC power flow (non
connected grid) at the initialization of AC power flow. Detailed error:
ErrorType.SolverFactor"

2. Grid2OpException Divergingpower flow "Divergence of AC power flow. Detailed error:
ErrorType.TooManyIterations"
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3. Grid2OpException Divergingpower flow "Divergence of DC power flow (non
connected grid) at the initialization of AC power flow. Detailed error:
ErrorType.SolverSolve"

We collected all error messages and mapped them to the clusters of Section 4.1. The results can be found in Table 5.
While there is some difference in the percentage change, we can not find a distinct relation between cluster and error
message.

Error
Type

Changed
Topology

Decreased Load
Consumption

Disconnected
Power Lines

Increased Generator
Injections

Increased power flow
on Power Lines

1 61.2% 63.97% 69.27% 68.15% 65.01%
2 27.47% 27.03% 24.71% 26.42% 26.18%
3 11.32% 9% 6.01 5.43% 8.81%

Table 5: In this Table, we map the three error types with the different clusters. For each cluster we aggregate the error
types to percentage values for better viability.

Specific Descriptive Scenarios We further accounted for three descriptive variables for the scenarios:

• Attack93: This variables indicates, whether the Line 93 is disconnected or will be disconnected in the next
step

• This variable indicates, whether the grid was in its original state, i.e., all substation had their buses set to one
and all lines were disconnected

• Lastly, we collected the percentage change of the generator 37, as this generator was directly at substation 68.

For the first two variables, we have the following occurence:

Specific Descriptive Scenarios

DoNothing Senior95% TopoAgent85−95% Total

Attack93 1367 1312 1378 4057
Stable 169 817 646 1632
Table 6: Specific failure cases identified in descriptive analysis.

In case of the generator 37, we can see the following percentage increase across the scenarios:
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Figure 8: Visualization of the percentage change on the generator 37 in comparison to its obst=0.
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