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Abstract. The increase of renewable energy generation towards the
zero-emission target is making the problem of controlling power grids
more and more challenging. The recent series of competitions Learning
To Run a Power Network (L2RPN) have encouraged the use of Reinforce-
ment Learning (RL) for the assistance of human dispatchers in operating
power grids. All the solutions proposed so far severely restrict the action
space and are based on a single agent acting on the entire grid or multiple
independent agents acting at the substations level. In this work, we pro-
pose a domain-agnostic algorithm that estimates correlations between
state and action components entirely based on data. Highly correlated
state-action pairs are grouped together to create simpler, possibly inde-
pendent subproblems that can lead to distinct learning processes with
less computational and data requirements. The algorithm is validated on
a power grid benchmark obtained with the Grid20p simulator that has
been used throughout the aforementioned competitions, showing that
our algorithm is in line with domain-expert analysis. Based on these re-
sults, we lay a theoretically-grounded foundation for using distributed
reinforcement learning in order to improve the existing solutions.
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1 Introduction

Distributing electricity from generation sources to end-users is an extremely
complex task. Transmission System Operators (TSOs) across the world must
ensure a safe supply of electricity through power grids, meeting the demand at
all times while preventing blackouts. Power grids are controlled from control
centers by human dispatchers, with remote observability to all transmission net-
work elements. Their role is to monitor the electricity network 24 hours per day,
365 days per year. They must constantly keep the network within its thermal
limits, frequency ranges, and voltage ranges by taking remedial actions on net-
work elements such as lines and substations via remote control command (Kelly
et al., 2020). Nowadays, the increase of renewable energy generation towards the
zero-emission target is making the problem of controlling power grids more and
more challenging. The energy production by renewable generators is constantly
fluctuating due to weather conditions, making power grid operations a stochastic
control problem. Existing software, computational methods, and optimal power
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flow solvers are not adequate for real-time network operations on short tempo-
ral horizons in a reasonable computational time (Kelly et al., 2020; Serré et al.,
2022). In order to overcome these complexities, TSOs need new methods for con-
trolling power grids. Among emerging techniques, Reinforcement Learning (RL)
has been explored in several works over the last years with promising results
(Dorfer et al., 2022; Chauhan et al., 2023; van der Sar et al., 2023; Lehna et al.,
2024).

RL is the special class of Machine Learning (ML) methods dealing with
sequential decision-making problems (Sutton and Barto, 2018). Controlling a
power grid with RL means learning an optimal control policy from data. The
recent success of RL in games (Silver et al., 2017), robotics (Haarnoja et al.,
2024), and industrial processes (Luo et al., 2022) - just to name a few - is due to
recent algorithms powered by deep learning that can efficiently handle complex
and heterogeneous data. The main advantage of using RL is that it can identify
and capitalize on under-utilized, cost-effective actions that human dispatchers
and traditional solution techniques are unaware of or unaccustomed to, result-
ing in more efficient control of the power grid by learning effective relations on
stochastic data. In problems such as power grid control, there is a huge quantity
of observed variables about the grid (e.g., power production, load consumption,
power flow over transmission lines) and an impressive amount of control actions
that human dispatchers can take (e.g., topological changes, generator dispatch-
ing). With this large state and action space, RL algorithms suffer a problem
known as the curse of dimensionality, i.e., the amount of data/computation
required to achieve a good solution may be out of reach.

Distributed Reinforcement Learning (DRL) algorithms can be considered
to mitigate this problem by distributing the learning process among multiple
agents (Zhang et al., 2021). In this framework, each agent can observe just a
limited part of the state space and take only a small number of actions, but
all the agents cooperate to achieve a common goal. The main idea of DRL is
thus breaking the complexity of the original RL problem by creating smaller
and simpler subproblems. Designing subproblems is, therefore, a crucial task
that may critically affect the performance of the learning algorithms. Obtaining
a factorization of the state and the action space of a power grid is an extremely
challenging task since localized actions may have side effects on a distant portion
of the grid, thus requiring including in the observation/action space of an agent
information about other elements of the grid despite their spatial distance (Marot
et al., 2018a).

Original Contribution. In this work, we propose an algorithm for state and
action factorization of the power grid control problem that can be used to ex-
ploit the benefits of DRL methods compared to traditional RL. The algorithm is
domain-agnostic, meaning that it can be applied to any complex decision-making
problem beyond power grids as it does not require any a priori knowledge of
the domain of the problem. Correlations between state and action components
are entirely computed on data by using mutual information, an information-
theoretic measure that is used to assess how much a state or an action variable
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(input variables) can be used to predict the evolution of future values of the state
variables (target variables). Highly correlated state-action pairs are grouped to-
gether to create simpler, possibly independent subproblems that can lead to dis-
tinct learning processes, e.g., over different portions of the grid with fewer data
requirements. The algorithm is validated on a power grid benchmark obtained
simulating realistic production/consumption profiles with the open-source sim-
ulator Grid20p!, showing that our algorithm, despite being domain-agnostic, is
in line with domain-expert analysis. Based on these results, we propose to use
then DRL algorithms to solve subproblems identified by the computed factoriza-
tion with the objective of improving the existing solutions for power grid control
based on traditional RL.

Paper Structure. The paper is organized as follows: Section 2 presents related
works, Section 3 contains a general formulation of the problem of state and action
factorization, Section 4 contains our algorithm with the associated pseudocode,
Section 5 shows the experiments, and finally Section 6 concludes the paper with
possible future work.

2 Related Works

RL for power grids. The recent series of competitions Learning To Run a Power
Network (L2RPN, Kelly et al., 2020; Serré et al., 2022) have encouraged the
use of RL for the assistance of human dispatchers in operating power grids.
Originally developed by Reseau de Transport d’Electricitée (RTE), the French
TSO, its aim has been to promote investigation into the network operation prob-
lem in a competitive context. For that purpose, RTE developed the open-source
Grid20p simulator to model and study a large class of power system-related
problems and facilitate the development and evaluation of agents that act on
power grids. The Grid20p simulator is a flexible tool, allowing researchers to ac-
curately simulate power system dynamics for different networks while interacting
with the environment through different types of actions.

Most of the RL methods developed to control power grids are thus related to
the L2RPN competitions. An overview of the solutions proposed during the first
edition is reported in (Marot et al., 2021). The winning solutions of the last two
editions are presented in (Dorfer et al., 2022) and (Artelys, 2023), respectively.
All the solutions proposed so far severely restrict the action space and are based
on a single agent acting on the entire grid. For instance, the authors of (Dorfer
et al., 2022) and (Artelys, 2023) reduce the action space to a small set of topo-
logical actions (i.e., changing bus connections at a few substations) and rely on
standard optimization solvers for other types of actions such as generator redis-
patching. RL is thus limited in its capacity, preventing the original intention of
exploring the entire action space.

Subsequent works have further explored RL algorithms beyond the scope
of the competitions yet with the same limitations described above (Chauhan

! https://github.com/rte-france/Grid20p
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et al., 2023; Lehna et al., 2024). On the other hand, (van der Sar et al., 2023)
proposed for the first time a multi-agent RL approach as a solution to reduce the
action space by creating an agent for each substation and specializing it on its
own topological actions only. A rule-based method based on the line overloads
decides which agent has to act. Similarly, (Manczak et al., 2023) presents a
hierarchy of agents with different combinations of high-level and low-level agents.
For instance, one possibility is having a low-level RL agent that uses action
masking to select a subset of actions dictated by a higher-level agent, which, in
turn, is based on heuristics or RL algorithms. There are two main limitations of
these approaches: (i) the observation space is not reduced as each agent observes
the entire grid, (i7) the number of low-level agents is related to the number of
configurable substations, thus requiring a large number of agents on grids of
increasing size.

With our method, we would like to overcome such limitations by distributing
the learning process across a smaller number of agents, each taking care of a
specific subproblem that has been identified in the data-driven decomposition
of the original problem (for instance, controlling a zone of the power grid with
several substations). Each agent has thus a reduced action space and, at the
same time, can only observe the relevant state variables of its own subproblem,
resulting in a simpler learning problem.

Power grid segmentation. The segmentation of large-scale power grids into zones
is crucial for human operators when controlling the grid in real-time. Power grids
are usually segmented into static zones that are redefined every year to study
the grid efficiently in real-time. Typically, the segmentation has been computed
using analytical methods that have been more extensively explored in the field
of power systems (Marot et al., 2018b). Only recently, a data-driven approach
using machine learning has been proposed (Marot et al., 2018a). By simulating
the effects of a specific intervention of human operators (i.e., line disconnections
on the other lines), the authors were able to create an adjacency matrix of a
directed graph of lines on which they executed a graph clustering algorithm.
The resulting clusters were used to segment the power grid, showing interesting
results in different realistic scenarios.

Our method has in principle a similar objective of power grid segmentation
but it is designed to be more general, i.e., to segment the entire state and the
action spaces with respect to any kind of intervention and independently from
the physical configuration of the grid. Most notably, our method is meant to be
domain-agnostic and widely applicable to any complex decision problem.

3 Problem Formulation

A power grid is represented by an undirected graph with nodes being substations
and edges being transmission lines. Generators and loads are directly connected
to substations. Energy demand requested by loads must be satisfied by the pro-
duction of generators at any time, but at the same time, each transmission line
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can only carry a limited amount of energy. Human dispatchers constantly mon-
itor the grid and remotely operate remedial actions that ensure safe working
conditions of the grid, such as topology changes at the substations and dispatch-
ing of generators.

As a consequence, from the perspective of a dispatcher, power grid operations
can be modeled as a sequential decision-making problem. At each time step, the
grid is represented by a set of variables that we may call state (e.g., information
about generators, lines), and actions are taken causing the grid to transition to
a new state and producing an operational cost to the TSO related to different
factors (e.g., energy lost due to the Joule effect, cost of re-dispatched energy).

Markov Decision Processes (MDPs, Puterman 1990) offer a well-studied math-
ematical framework to model sequential decision-making problems and are used
for the formulation of RL problems. An MDP is formalized as a tuple M :=
(S, A, P,R,H), where S is the set of states the environment can assume, A is
the set of actions the agent can execute, P : S x A x S — [0, 1] is the stochastic
transition function (P(s’|s,a) being the probability of moving to next state s’
when performing action a in state s), R : S x A — R is the reward function
(R(s,a) being the reward the agent gets when performing action a in state s),
and H € N is the planning horizon.

In MDPs, both the transition probability and the reward function depend
only on the current state and action, as the state and action histories are ir-
relevant (Markov property). The agent chooses actions according to a policy
m: S x A —[0,1] that maps states to stochastic actions, 7(a|s) being the proba-
bility that the agent chooses action a when the environment is in state s. Finding
an optimal solution to an MDP means searching for a policy 7* that maximizes
the expected sum of the rewards obtained by the agent during the H steps of

interaction with the environment, formally 7* € argmax, E, [ZtH: 1 R(st,at)].

Rewards are here considered equally important over time (undiscounted finite-
horizon MDP).

Factorizable Structure. In this work, we consider a factored structure for the
MDP M in which the state and action vectors have components

s = (51752""55n) ES?

a= (a17a27 s 7af'm) €A

Moreover, we suppose that our MDP M can be seen as composed of K inde-
pendent MDPs M = (Mj,)E |, with each one being defined as:

My = (Sk,Ak,Pk,Rk,H).

In this formulation, each state space Sy and action space Ay of the MDP
M, are taken as a subset of the space S or A by combining the domains of only
some components of the vector s or a. 2

2 In the case for example M = (M, Mz), we can suppose that the state of M; is
composed by the first two components (s1, s2) of the state vector s and the action of
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This formulation seems to resemble the framework of Factored MDPs (Degris
et al., 2006). However, we assume a different factorization of the global transition
probability and of the global reward function. The underlying MDPs presents
transition probabilities Py : Sk x A X S — [0,1] and the reward functions

& Sk X A — [0,1]. The global transition probability and reward function of
M are defined as:

N

(s'|s,a) H (s |sk,ak),

R(s,a) = f (Ri(s1,a1), Ra(s2,a2),..., Rx(sk,ak)),

where the variables in bold si € S, ay € Ay, refer to the state/action vectors
of the MDP M, (not to be confused with the scalar components of the vectors
s,a of the original MDP M). The term f(-) refers to a fixed function that
combines the rewards of all the MDPs.

It is easy to show that with this formulation we can consider — without loss of
generality — independent policies on each MDP M}, to optimize the global MDP
M. The main idea of this paper is therefore to find an algorithm that returns an

. . .. a K .
estimate of the state and action factorization (Sk, Ak) that ideally matches

the true factorization (Sk,.Ak)K Then, we can use DRL algorithms on each
of the MDPs defined by the estlmated factorlzatlon and optimize the original
problem M.

We can start by defining a fully connected graph G = (V, E) in which

e V/ is the set of nodes containing all the state and action components from
s,a and all the next state components from s’
e F is the set of edges representing the interactions among components

E = {(zi, s}) | i, s € V and ¢z, 8}) > 8}, (1)

where c(z;,s}) is a metric that measures how much a variable z; (state
or action component) is important to predict the variable s’ (next state
component), with ¢ being a suitable threshold.

With the above definition, the presence of an edge (z;,s}) in the graph G
means that the component of the next state 8;- can be predicted by the compo-
nent x; of the state or action vector, thus z; and s; belong to the same MDP. In
this formulation, we can discard the weak connections by means of the thresh-
old §, and we can obtain either an undirected or a directed graph if the metric
is symmetric or asymmetric, respectively. On this graph, we can then run a

. . .. . . " 3 T\K
clustering algorithm to divide the variables into communities (Sk, .Ak) el
M is composed by the first component (a1) of the action vector a. The state space

and the action space of M1, namely &1 and A;, are thus obtained by combining the
corresponding domains of only those components.
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Algorithm 1: State and Actor Factorization
Input: MDP M, Explorative policy m, Threshold ¢

Output: Factorization (SAk,JZk)szl
Algorithm:
1. Collect a dataset D of transitions from M with policy 7.

2. Compute the adjacency matrix fg approximating the mutual information
on D and using ¢ as threshold

3. Transform fg into a pseudo-block diagonal matrix and define the set of

clusters (S\,ﬁ .Zl\k)kK: , corresponding to diagonal blocks

Performance Evaluation. In order to evaluate the performance of the predicted

factorization (§k7 ,Zl\k) 2(:1 compared to the real factorization (S;€7 Ak) ]I::l, we can
suppose there is a ground-truth adjacency matrix for the graph G denoted as Ig
that we can compare to our prediction Ig (computed with Eq. 1) by means of

some suitable metric ¢, e.g., the Frobenius norm:

0(16.75) = |16~ T = 3 (gl ~ Talinsl) )

)

Therefore, based on ¢, it may be possible to quantify an approximation error
that gives the performance of the algorithm.

4 Algorithm

We propose an algorithm that uses an information-theoretic measure to build
the adjacency matrix Ig that describes the correlation among state and action
variables, and finds a factorization of the original MDP M. The pseudo-code of
the procedure is reported in Algorithm 1.

The first step is to collect a dataset D from M with a sufficiently exploratory
policy 7. (see, e.g., Mutti et al. 2021):

D= {(s,a,s’)t}z;l

where each entry is a transition that starts from state s, plays an action a ~
7e(- | 8) and reaches state s’.

We define a random variable S’ that represents the next state vector and a
random variable X that is the concatenation of the state vector and the action
vector:

S = (51,55,...,5),
X = (SlaS27~-~;Sn7A1aA25"'aA’m)a
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Each entry of the dataset D is a joint realization of X and S’. We can now define
the connectivity matrix Ig as a matrix of size (n x (n +m)) having a row for
each component of S’ and a column for each component of X. Each entry fg i, 7]
is computed based on the Mutual Information (MI) between the component ¢ of
the next state vector, S, and the component j of state-action vector, X,

Igli, 7] =
gliJ] 0 otherwise

p(s;, xj)
o <p<5;>p(xj)>]

quantifies the amount of information (or, equivalently, reduction in uncertainty)
that knowing either variable provides about the other, § is a suitable threshold.
The quantity MI(S!, X;) cannot be computed exactly as, in practice, we do not
have access to those probability distributions, but it is approximated using the
dataset D. R

At this point, the binary matrix Ig can be transformed into a pseudo-block
diagonal matrix, arranging the columns so that variables X; that have an impact
on the same components S are close together. Based on such diagonal blocks,
we can define the set of clusters (gk, ﬁk)szl and run a DRL algorithm on each
corresponding MDP.

~ {1 if MI(S!,X;) > 6

where

MI(S!, X;) :=E

5 Experiments

We performed two different experiments to test the effectiveness of our algorithm.
In the following, each experiment is presented in a separate paragraph, with
details on data collection and evaluation metrics. The estimator proposed by
(Gao et al., 2017) is used to compute the mutual information®. A recursive
depth-first search is called alternately on rows and columns of fg to obtain a
pseudo-block diagonal matrix in which the input variables X; that influence the
same target variables S! are grouped together in the same block. The threshold
¢ is properly tuned to maximize the effectiveness of this block diagonalization.

Synthetic data. The first experiment is conducted on synthetic data generated
according to a specific distribution. Each state vector s has n = 5 components,
whereas each action vector a has m = 3 components. All components are in the
range [0, 1]. The following state-action factorization is assumed:

(1) : sy = (51,83,85), a1 = (a1,az)

(2) : 82 = (s9,54), a2 = (a3)

3 a bias correction is applied by computing the mutual information also on a modified
version of D in which existing correlations among variables are arbitrarily broken.
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Starting from a state s, every interaction consists of selecting a random action
a and then taking each component of the next state s’ as a copy of any state or
action component of the same cluster with equal probability. For instance, the
first component of the next state s| will be a copy of any of {s1, s3, $5,a1,as}
since the first component of s belongs to cluster (1).

With a dataset of T = 10° samples, the original factorization is perfectly
reconstructed with § computed as the 0.5 quantile of each column of the matrix.
The corresponding approximation error of I, g 18 0.02, computed as the Frobenius
norm (Eq. 2) divided by the size of Ig (i.e., only 1/40 elements of Ig is different
from the ground truth matrix).

Power grid simulation. The simulated power grid used in our experiment is
shown in Figure 1. It is called 12rpn_casel4_sandbox in the Grid20p simu-
lator, and it is based on the IEEE casel4 power grid benchmark. It counts 14
substations, 20 lines, 6 generators (of which 3 renewables), and 11 loads.

I2rpn_case14_sandbox
— powerline
— substation

load
) generator
storage

—e— no bus
—e— bus1
bus2

Fig. 1. A layout of the grid used in the experiment with the Grid20p simulator.

The state space of the Grid20p includes much information about the grid,
such as generators’ power production, loads power consumption, power line state
(including the power flow as a fraction of capacity, denoted as p), topology con-
figuration (bus configurations at each substation). The action space includes
four types of actions: topology modification (i.e., switching bus at substations,
line connection/disconnection), redispatching (i.e., requesting a change in energy
production in non-renewable generators), curtailment (i.e., reducing power pro-
duction in renewable generators), storage actions (i.e., storing/retrieving energy
from storage).



10 Losapio et al.

We restrict the state space to the power flow of each power line as a frac-
tion of its thermal capacity (variable p) and the action space to the vector of
topological changes for each substation. This restriction simplifies the problem
but at the same time takes into consideration two fundamental aspects of the
power grid: (i) p is the most significant variable for the real-time monitoring of
the grid because line overloading may potentially cause a cascading failure that
leads to a blackout, requiring the immediate intervention of a human dispatcher;
(ii) topological actions are the only non-costly available actions and are thus
preferred by TSOs.

We considered only a small portion of the adjacency matrix fg, i.e., the
columns of the action components corresponding to the substations with more
than 3 connected elements?, with the objective of having a factorization of topo-
logical actions based on their direct influence on power lines. A random policy
is used to collect a dataset of T € [10%,10°] transitions, separately for each
substation. With a threshold § equal to the 0.7th quantile on each column, we
obtained a factorization of two clusters, corresponding to a segmentation of the
power grid shown in Figure 2.

Ruvéx—\\t\\#< "
\ , &\\*(x

Fig. 2. The factorization obtained in the Grid20p experiment. (Right) Pseudo-block-
diagonalization of the estimated portion of the adjacency matrix Ig. (Left) Correspond-
ing power grid segmentation.

In this case, we cannot compute an approximation error since we do not
have a ground truth adjacency matrix, but we can observe that our results are
in line with the domain-expert analysis presented in (Marot et al., 2018b,a) that
produces an analogous power grid segmentation.

4 Topological actions on the remaining substations are not useful since they involve
disconnections of some of their elements (which may cause disruptions on the grid).
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6 Conclusion

In this paper, we introduced an algorithm for state and actor factorization in
power grids. The main advantage of our algorithm is that it is domain-agnostic
in the sense that it is applicable not only to power grids but can also be extended
to any complex decision-making problem as it does not require specific knowl-
edge about the problem. In fact, the factorization is entirely based on mutual
information estimated on data, which provides theoretically grounded insights on
how much variables of state-action pairs are informative about each other. The
results of our algorithm are in line with domain-expert analysis on a power grid
benchmark obtained with an open-source simulator, demonstrating its potential
applicability for power grid segmentation. Consequently, DRL algorithms can be
used on the discovered subproblems to improve existing solutions for controlling
power grids based on traditional optimization methods or standard RL.

Future works can include the use of correlation metrics different from mutual
information, possibly reducing the number of samples required by its estimators.
A theoretical analysis is also required to understand how the choice of the policy
for data collection influences the data distribution and how the choice of the
threshold for building the adjacency matrix can be automatized. Finally, in case
the discovered factorization produces some dependencies among subproblems, it
may be interesting to investigate efficient forms of communication among agents
that can be applied in distributed reinforcement learning algorithms.
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