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Welcome!
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Welcome!

* Today’s schedule:
* Introduction
e Decision making in AI4REALNET
* Knowledge-assisted Al: Definition, overview, and state-of-the-art
e Case study: Air traffic control
e Case study: Power network control
* Questions & Discussion
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AI4REALNET project objectives and scope

AIR TRAFFIC
NETWORK

» Develop next generation of decision-making methods
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» Human-Al co-learning
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» Autonomous Al

Al-friendly simulators

> Boost the development and validation of novel Al

algorithms via 3 existing open-source Al-friendly digital
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environments
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Presenter
Presentation Notes
The AI4REALNET project is an European project within the framework of the Horizon Europe research and innovation program, and launched in September 2024 for a duration of 42 months. 

The aim of the project is to create a multidisciplinary approach combining emerging AI algorithms, open-source digital environments and socio-technical design of AI-based decision systems (where human has centeral role in this project) by considering the interaction between human operators  and AI agents.

To ensure the robustness, we have identified a set of KPI for each industrial domain and corresponding usecases based on assessment list of trustworthy AI (ALTAI) and also AI ACT. They should also consider the interaction mode between human and AI agent.
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Project use cases: focus on critical infrastructures
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Al assistant supporting human

operators’ decision-making
in managing power grid congestion
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Automated re-scheduling

in railway operations @
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Airspace sectorization
assistant

The re-scheduling task is performed in a
highly automated manner by an Al-based

Al ROLE

! e

Partially and fully automate the
sectorization process to assist or replace

re-scheduling system. It observes the real-
time state of all the trains and tracks in the
control area of interest and automatically
detects the need to intervene, decides on an
intervention, and executes this intervention.

FULL AI-BASED CONTROL.

design safety rules & control

2 in “safety mode”
i
Self-learning

]
TUDelft
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Al-assisted human re-scheduling

in railway operations @

the staff r ger in deciding when

and how to split and merge sectors to
balance the workload of tactical ATCOs.
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Flow and airspace
management assistant
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Al ROLE

IROUSTRY JOVATION
(AND INFRASTRUCTURE

Assist the human dispatcher in
railway operations in re-scheduling
train runs to fulfil all offered
services and minimize delays for the

customer.

JOINT DECISION MAKING
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& Reflect {2} Advice &Feedback = g peflect
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Provide advice to air traffic controller about
deviations with better sector capacity
adherence and performance measured by
an indicator of environmental area. Also
consider the need to review the sectorization
plan due to the activation of military areas
and required trajectory efficient deviations.

JOINT DECISION MAKING

self-learn 2 : self-learn
& Reflect g Feedback & Reflect



Presenter
Presentation Notes
We have identified 6 usecases in this project with collaboration of external stakeholders and network operators supported by R&D partners. 

For each industrial domain, we have a set of different expectation in terms of interaction mode that could be existing between human and AI
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AI4REALNET conceptual framework

» The AI4REALNET conceptual framework defined
based on an interdisciplinary approach by

integrating diverse fields, such as psychology
and cognitive engineering, with Al

» Four layers addressing
» Decision environment and context
» Human agent decision making
» Al agent decision making

» Trustworthiness assessment
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Presenter
Presentation Notes
We have also already defined a conceptual framwork for the whole decision making process in the project. Here, I have shown an instantiation of the framework for human-AI co-learning scenario. It is composed of three main parts. 
The decision environment where we have the context in which a decision should be made alongside the decision characteristics,
Once an event occur, the AI4REALNET system should take a decision to ensure the stability of critical networks for example. This decision could be the results of a cooperative work between human operator and AI-based agent and their interaction. They can learn from each other in this specific scenario, AI could provide some recommendations and Human agent could give some feedbacks for AI agent to be improved. 
Finally, once a decision is made, it should be evaluated through a set of trustworthy KPIs and validated by a regulatory agent. 

In this webinar, the objective as also mentioned by Herke earlier is to consider the AI-agent as a form of AI algorithm augmented by knowledge. This knowledge could be for example physical equations, logic rules, etc. 

Digital environments provide the information concerning the decision context
Decision making is based on collaboration between AI and human agents
Human in full control
Human-AI co-learning
Autonomous AI
The decisions should be conform to the regulations and trustworthiness KPIs
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Characteristics of critical infrastructure domains that
make KAl important

Complexity:
* Real-world dynamics often involve non-linear behaviors and rare events
— Data alone might not capture these dynamics and prior knowledge consideration is crucial

Data scarcity:
* History data may be incomplete and noisy and might not fully represent future scenarios
— It makes domain knowledge consideration crucial

Regulatory and safety requirements:
* Regulations and safety standards demand systems to align with predefined rules and guidelines
- Knowledge-assisted Al can ensure compliance and simplify audits

Need for Interpretability:
= Operators and stakeholders must trust Al decisions, which necessitates explainability
— Explicit knowledge makes it easier to trace and justify Al actions
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Presenter
Presentation Notes
Complexity : As an example in a power grid use case, changing the way that the substations (nodes) are interconnected in a specific zone could have some non-linear impacts on other regions of the network, and without considering some prior knowledge, it would be very complicated.
Data scarcity: That could inject some uncertainty in decision making and the addition of prior knowledge may help to reduce this uncertainty. 
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Definition )@'\

* Knowledge assisted Al in AI4REALNET

“[d]evelop Al technologies that can leverage the strength of both classical planning or
optimisation heuristics, as well as ML techniques.”

* Informed Machine Learning [von Rueden et al., 2021]

"learning from [...] data and prior knowledge. The prior knowledge comes from an independent
source, is given by formal representations, and is explicitly integrated into the machine learning
pipeline"

¢ Neural—sym bolic or hybrld systems [van Harmelen & ten Teije, 2019; Yu et al., 2023; Sarker et al., 2021]

Various architectures for combining learning and reasoning or symbolic systems, including
deliberative components inside a learning system
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Overview
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Von Rueden et al., 2021
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State of the art >©\

Increasing body of work in informed machine learning and neural-symbolic Al

Most of this work in supervised learning (regression, classification)

Infrastructure control requires decision making, e.qg.: reinforcement learning

Less work available — topic of today
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State of the art >©\

* Knowledge assisted methods for reinforcement learning fall predominantly in
four categories:
* Prior information about the desired system behavior
* Prior information desired system states
e Symbolic components within (neural network) models
* High-level symbolic planning with low-level (neuronal) learning

* Alternative: Decision making based on informed prediction methods
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State of the art: Information about policy

* Policy is a rule or (learned) function that decides which
actions to take in which situation

* Learned policy bad at first: also generating data using a
prior policy, speeds up learning (Zhao et al., 2020, 2022).

* Alternatively, encourage learned policy to be close to a
known guiding policy (Dai et al., 2022)

* Use knowledge to exclude actions known to be bad or
dangerous: shielding (e.g.: Al-Shiekh et al., 2018).

* Use information about the functional form of the policy,
such as (geometric) invariances (van der Pol et al., 2020).
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State of the art: Information about value >©\

Action Masking (§111-C)

Value function represent whether system state is good
or bad, helpful to evaluate actions

| Reward Shaping i

Initially values bad when learning from scratch, S e
instead refine a coarse value function obtained from b gl el

optimizing an approximation (Wohlke et al., 2022). Figure: Xie et al., 2024
* Alternatively, shape reward function using knowledge eicter_—{rovard preaor o uman.
or assumptions about the problem (Xie et al., 2024) W[ K
. . observation
* Specify rgvyards using human feedback or preferences | . = N
(e.g. Christiano et al., 2017) action

Figure: Christiano et al., 2017
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State of the art: Symbolic components )@\

. | % :
e Often, general-purpose architecture (e.g.: neural 1. Symboe
network) trained as value function or policy 7 peckend rontend

Sensory

Motor
output

input Reward Agent

* Instead, include symbolic components (e.g., - )
reasoning engine, optimizer, planner) into such Environment T
architectures

Figure: Garnelo et al., 2016
e E.g. learn to extract symbolic representation,
further processed by symbolic system (Garnelo
et al., 2016, Garcez et al., 2018).

e Or generalize using known symbolic relations
between inputs (Hopner et al., 2022).
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State of the art: Hierarchical

* Data-driven methods excel at processing large-
volume sensory data, while planning or reasoning
usually takes place at a more abstract level

e Use planning vs. learning components in different
layers of decision hierarchy (e.g. Araki et al., 2021)

* Feed high-level task description into decision
making architecture (e.g. Vaezipoor et al., 2021)

* Learn symbolic policies on top of pre-trained
sensory-motor skills (e.g., Mitchener et al., 2022)
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Types of knowledge in assisted RL methods >©\

Representation

How is the knowledge
represented?

Algebraic Equations Critical in model based reinforcement learning (Moerland et al., 2023)
Differential Equations Critical in model based reinforcement learning (Moerland et al., 2023)

Simulation Resuts Critical in model based reinforcement learning (Moerland et al., 2023)

Spatial Invariances e.g. Araki et al., 2021, Vaezipoor et al., 2021.

Logic Rules e.g. Van der Pol et al., 2020

Knowledge Graphs e.g. Hopner et al., 2022
| Propabilistic Relations | Critical in model based reinforcement learning (Moerland et al., 2023)
[ Human Feedback | e.g. Christiano et al., 2017

Von Rueden et al., 2021
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Knowledge integration in assisted RL methods )@\

e By far most discussed methods
constrain the hypothesis set

* Some exceptions:

e Mitchener et al. (2022), describe a
system that tunes symbolic system

e Christiano et al. (2017), describe a
states system learning from human
feedback

* Zhao et al. (2020, 2022) use a
predefined policy to generate data
to train system

actions
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Challenges

Applying these techniques in network topologies with
critical safety constraints.

e Can algebraic or differential equations directly be used
in model-free reinforcement learning methods?

* Further study of reasoning or other deliberative
components inside a neural network

* How to integrate knowledge in selection and Figure: Marot et al., 2021
evaluation of the final model?
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What ATC is all about >©\

“To ensure a safe, orderly, and expeditious flow of traffic”
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A safe flow of traffic )@'\

] 5nm - 1000 ft 0.1 nm - 100 ft
Radar separation: NMAC Zone

* En-route: mostly 5 nautical miles

(sometimes 10 nm)
* TMA: 3 nm %

When aircraft within distance less than 5 nautical miles and less than 1000 ft altitude
difference, this is called a loss-of-separation

A Conflict is a predicted loss of separation, uses protected aircraft zone (PAZ or PZ)

Near miss/Near Mid-Air Collision (NMAC) (US) /Airprox (UK CAA reports)
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An orderly flow of traffic

|
-l .
ulianadorp |
i, }
 Anna Paulowna

AIP NETHERLANDS
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Efficient flight?

AirSERBIA flight JU361 / AsL20z
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Great-circle distance
Flown distance
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Improving efficiency by delegating separation task >$\

* Enable user-preferred (direct) routing
* En-route separation performed on flight deck

* Development of geometric and classical optimisation methods since ‘90s

out _yVie -t
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Improving efficiency by delegating separation task

* Enable user-preferred (direct) routing
* En-route separation performed on flight deck

* Development of geometric and classical optimisation methods since ‘90s
_» Required relative track

Avoidance vector (Vawid) direction - --7 Current relative track
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Implicit coordination in geometric methods )@'\

Va
_Vb
AC,
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Emergence: the main concern of distributed separation >©\

*For distributed systems, behaviour on the global scale cannot be predicted from
local rules and behaviour

*This is the case for even the simplest example: Conway’s game of Life

e Micro-level: simple rule, If sum cells around cell
0,1 = cell ‘dies’ 3 ‘birth’
2 = cell ‘survives’ 4-8 cell ‘dies’

e Macro-level: complex patterns
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Hybrid application of RL )@'\

Conflict Resolution

* Hypothesis: RL techniques are good at pattern recognition: at High Traffic Densities

with Reinforcement Learning

potential of learning emerging patterns

* Hybrid geometric+RL approach, RL model will define:

* the look-ahead time, and

* how many degrees of freedom to employ
(i.e., heading, speed, or altitude variation) Marta Ribeiro

* Geometric algorithm performs resolution actions based on these parameters

N Ribeiro, M., Ellerbroek, J., & Hoekstra, J. (2022).
. . Improving Algorithm Conflict Resolution Manoeuvres
‘ with Reinforcement Learning. Aerospace, 9(12), 847.
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Hybrid geometric/RL conflict resolution model G
@ Conflict Resolution Manoeuvre
Look-Ahead Time
: 4@ Ownship's | Reinforcement (0-600 seconds) " Geometric Conflict

State Learning Method State Variation . |Resolution Algorithm

(Heading/Speed/Altitude)

Reward function:

—1 Loss of separation

R(St) - { 0 otherwise

3 + 4 X #aircraft
e
-
3
(4 w/ altitude var)

(4 + 5 #aircraft w/ altitude var )

2 X 256 neurons
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State Space

pacel

Dimension Element Limits
1 Current heading -180-1t0 180 -
1 Relative bearing to next waypoint -180-1t0 180 -

1

#Surrounding aircraft
#Surrounding aircraft
#Surrounding aircraft

#Surrounding aircraft

1

#Surrounding aircraft

Current speed

Current distance to #surrounding aircraft
Distance at CPA with #surrounding aircraft
Time to CPA with #surrounding aircraft

Relative heading to #surrounding aircraft

Only when the geometric CR method can also perform altitude variation:

Current altitude

Relative altitude to #surrounding aircraft

m/s to 18 m/s
0 m to 3000 m
0 m to 3000 m
0sto600s

180 - to0 180

0 ft to 100 ft
0 ft to 100 ft

* Efficiency

e Safety
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Action Space

Dimension Action Limits Units

1 Look-ahead time (for CR only) [-1, + 1] transforms to [0, 600] Seconds
1 Heading variation Yes if 2 0, no otherwise Yes/no

1 Speed variation Yes if 2 0, no otherwise Yes/no

Only when the geometric CR method can also perform altitude variation:

1 Vertical speed variation

Yes if 2 0, no otherwise

e ,_/_ . N

dynamic (RL)

N by Y

Q State Input

Conflict Resolution

Al4 >@\
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Results

Reduced number of LoSs on all traffic densities, even at a higher traffic density than the RL method was trained on

mm MVP Method (H+S)

mmm RL + MVP Method (H+S)

mmm MVP Method (H+S+A)

RL + MVP Method (H+5+A)

40
30 1
20 1

Total LoS [-]

| g
H

10 - T

&
!

40
30

* 20 -

10 A

= =

H

-

0

Increased number of conflicts

mmm MVP Method (H+S)

Traffic Density:

mmm RL + MVP Method (H+5)

0
1 Low [ Medium

3 High

mmm MVP Method (H+5+A)

RL + MVP Method (H+S+A)

10° 5
10° 1

10% -

Total Conflicts [-]

10° ;
10° 4

10° -

Traffic Density:
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Takeaways and follow-on studies

than the geometric baseline CR method

* This was caused by two mechanisms:

1. The prioritisation of conflicts depending on the degrees of freedom

* However, this is still tied reactively to detected conflicts;
follow-on studies looked at different structures

Sum of Rewards

-10*

/ —— Additive Attention

. Dot-Product Attention
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Power Grid case study: context )@\

e Context - Increase of required number of simulations:
* Emergence of renewable energy source: less predictable, hard to control
* Globalization of energy market / exchanges with neighboring countries
* A wider range of uncertainties to take into account and assess on power-flows

- Lo Y i
Residenceburg
500 MW

* Physical simulators - limitations S ...

 However, computation time of a physical simulation on real-grids: 100ms

600 MW

 Solution: Hybridizing physical models with machine
learning

* Expectation of performance improvement using a ML model: x100 minimum

Industryville Wind Fa
100 MW 186 MW
=

Coal
600 MW
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Power Grid case study: problem

e Currently used physical simulators
* Inputs / Outputs

X = injections

(productions + loads)

T = topology
ﬁ} 9‘-. - &
.. SRR o~ a&zoo
x.= —150 X, -
. x,= —100
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Power Grid case study: problem

e Currently used physical simulators
* Inputs / Outputs

X = injections

(productions + loads)

T = topology

Numeric Solver

(physics model) Y = power flows

TTT

x; =50

O o
A
]
x,= —150

* Characteristics
* Relies on physics equations (Kirchhoff law), resolved by iterative optimization (Newton-Raphson)
e Able to predict in a normal condition or different grid conditions

0=- pg +Z§1:1 lvillvm|(&k,m ~cos(O0 —O0m) + bk,m sin(@r —0m)) Active power;

Power Grid equations
0= qk+2§;:1|vk||vm|[gk,5-sin[9k—6m]—bk’mcos(ﬁk—ﬁm]] Reactive power

REALNET
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Power Grid case study: grid representation

* The power grid could be represented naturally as graph

Power Grid Graph

Substations and lines Nodes and edges

L2rpn_casel4_sandbox

o
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Power Grid case study: Physics equations )@'\

Local conservation law for a given substation i from power flow p of connected lines ¢

prnd Ir_)ad
P; Z pz

FeNI(i)
e Equivalently, we can write the active powers p, in terms of voltage angles 8 and admittances y of
neighboring nodes j rod  _load _
pr == ) 0%
JEli,N(i)}

Considering the neighborhood of node i as N(i) = {u, v, w}, this becomes

pfrrad p:aad _ (5'; % ,Vii) + [Q“ X }"fu] + (HU X 1_1..-“,] + (0 * Vi

- Ty
Sy ot o

message from message from message from
node u node v node w

The new value of 0 for layer k could be computed as following

o _ PP =Pt — 10U x yi) + 050 x yin) + 0170 x yiw)]
": Yii
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Power Grid case study: Physics Informed GNN )@\

 GNN layers followed by local conservation (LC) layers to compute the error

prod load _ : ) oy o
P — P = (@i x yii)+ Oux yin) + Op xyip) + O x yiw)
message from message from message from
node u node v node w
) Production A Load @ Substation (node) . Power line (edge)
GNN layer (1) LC layer GNN Layer (K) LC layer
piprud ym
Xi'
mead
© Yiw
0
0, = NN(X;) ~
Initialization
m; = Bjenq) (ﬂ'j(ﬂ} X Vi) m; = e Ny [31(1) X ¥Vij) m; = Bjen [Hj(K_l) Xvi;) M= Bjen vy (9}0{} X ¥ij)
j=i j=i
1 (prod,—load,)-m; : : (prod,—loa }—mi : -
6'1-( ) = £ " = EIU} = (prod} —loady) —m; 9?0 = E— % EI.("(J = (prodj —loady) — m,

yll
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Datasets and distributions )@\

Training and Test datasets Out-of-distribution Test dataset

300 000 100 000 200 000
observations observations observations

|:>To assess the robustness of models

Al4 >$\ ‘ ai4realnet.eu ( @@
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Power Grid case study: Evaluation results >©\

e Results (The values are the violation percentage of the corresponding metric)

Test Loss target Loss pos Energy loss Global Local

dataset consistency | conservation | conservation
FC

Test dataset “ S P 0.0 0.0 0.0 0.0 0.0

Test OOD Loss target Loss pos Energy loss Global Local
dataset consistency | conservation | conservation
FC
- P P 0.0 43 0.0 95 93
o “ S P 0.0 0.0 0.0 0.0 3.08
Out-of-Distribution

Test dataset

L
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Power Grid case study: Multi-criteria evaluation )@'\

ML-related

@

MAPE 90

currents

MAPE 10

powers

MAE

voltages

Evaluation based in multiple categories of metrics

Physics compliance

X

Generalization

.q‘

D

Type

Measure

Pl

P2

P3

P4

P5

Current positivity
Voltage positivity
Losses positivity

Disconnec! ted Line

Energy Losses

1 f.-l
LEF Vgt <o)
Ly
L gt <)
1yL

1
EXe Nt epl <0

1 Ldisc
1
Taise T aiee M0zl 1500

a0, ()
vk (pld pll)y
=L 0T € (0.005,0.04]

Industrial readiness

X

Uni-dimension law

Model capacity to generalize

on unobserved
out-of-distribution (OOD)
dataset

P6

P8

Global Conservation

Local Conservation

Voltage equality

MAPE((Prod — Load) - (£5_, (P + P )
d .
MM’L“((pZm *ﬂLMJ*Q_renmg:hﬂin

i Yoy wjl=0)
ijek
i

Al4 )@\
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Evaluation pipeline: LIPS framework

e LIPS: Learning Industrial Physical Simulation

* A modular framework to evaluate hybrid models
* Open-source framework based on various categories of evaluation criteria
* Multiple competitions are organized on the basis of LIPS framework

Data &

~=P Define dataset

v Real-world data
v’ Simulated data

~=P Define scenarios

vk .
| Action Search | l Rolling Cycle |
| IEEE14 | [ Rolling dataset |

Benchmark configurator &

‘ Select a dataset

Evaluate
Select
augmented simulators
Augmented simulator CJ§
~=P Select models
Fully CNN GNN RNN LeapNet
connected

@ ﬂ?ﬂ%ﬁéﬁ@

Al4 >$\
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Evaluation [

ML-related

Performance

Physics
Complianc
o
>~ 0RO
. . -
Precision Convergence

@

~=) Compute evaluation criteria

Constraints  Laws

Usecase

ooD
Ss Generalization
2. & —®
. .‘.
Scalability ot=

ic visualization

Criteria category

ML-related Readiness OOD Gen.

Physics

r7ig| e

il "l

S| Leapet 000 ]

. T
UNet O NA 000
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Power Grid case study: Physics criteria to respect >©\

* The Al-based solutions should be conform wrt. various physics criteria/law

ID Type Measure Description
Basic
Pl  Current positivity TEFL g Proportion of negative
. (dgp, px<0-
current
P2 Voltage positivity 1k <0 Proportion of negative
anex voltages
P3  Losses positivity 33 BV Proportion of negative
(Pex+Por<0.
energy losses
i, T 1 Liise 1 -
P4  Disconnected Line Tam eqe 1y £ 11t 150) Proportion of non-null
a, p or g values
: Efo (P2 +Poy)
P5  Energy Losses ==l € [0.005,0.04] energy losses range
consistency
Uni-dimension law
P6  Global Conservation — MAPE((Prod - Load) - (£}_, (pf, + p5,))  Mean energy losses

P7

P8

Local Conservation

Voltage equality

prod

MAPE((p} ™ - pipad] ~ Lieneigik ﬁ{)]

E i Wo-wjl>0)
ijek
i#j

residual

Mean active power
residual at nodes
Proportion of not
equal voltages at
nodes

Al4 >$\
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Competition on a real-world application

* Fast contingency screening

* Penetration of renewable energy (30% wind + solar here)

* Changing topologies at substations

* Trust from the operators with acceptable compliance to physical laws

generator types

MACHINE I LEARNING FOR PI-IVGICAL

‘GROUPE €DF

SIMULATION CHALLENGE: [u] EI -y
THE POWERGRID USECASE —— solar
—— thermal
—— wind
YOUR MISSION:
To develop new ML surrogate models to speed-up power-flow simulations,
@ in order to run advanced near real-time congestion risk assessment! Criteria category
PRIZES: Test dataset (30%) Speed-up (40%) 00D generalization (30% ) Global Score (%)
) Method ML-rclatcd(66%) Phyﬁlc‘:("ﬂ%) Speed-up ML -rclatcd(66%) ﬁiyﬁlcs(%)
P e P00 Ogr Gex Por Doz Vor Vex P3 P1 Ps Pe PT Ps Gor ez Por Pex Vor Vez DL P2 P3 Pa Ps D6 D7
g e e Powerflow (LighiSim2grid) |© @ © © © © ““‘O_“ . i 9 00 00 ‘i“‘.—.—‘ 60.2
* Most accurate ML model : 1000 € Competition baselines
- Sest sudent oo 1000 & Fully Connccted OO0 OO 00 0000000 1545 PO 0O 00 00000000 n3
COMPETITION DEADLINES LeapNet 0 00 00 000OGPCOOSGO 1.9 0 00 060 00CO0O0OCOOS 37.6
mg,, armu’ e Devtop ’ - o Fimﬁfm Competition Ranking
My 2024 Jumeldih. 2028 o 2624 Sepamber N A0A 4 1-Arizona Statc University 7.87 (AN EEEMNEIIXIXIIEKKX) 64.2 4 .62
2-XI" AN JIAOTONG University 9.69 0 00 00 oOoOOOO OO 57.80 1 1.42
quléﬁ'&‘ @ <SANVIDIA. :;exalon i X 3-Xlerator ThinAir 12.42 OO0 OO0 0 00000 OO 41.15+1.27
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Concluding remarks )@'\

* Knowledge assisted Al promising for control of real-world networks
 Various techniques for using knowledge-assisted Al in decision making

 Demonstration of applications in power networks and air traffic management

Future directions

* Deep integration of optimization, network structure, and constraints
* Facilitate Human-Al collaboration for better decision-making

* Autonomous adaptation of Al systems in response to changing environments
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Thanks for your attention!

Questions?
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Project use cases: focus on critical infrastructures >$\

1. Human operators are aided in their decision-making by an Al-assistant to congestion problems

2. Transfer from simulation to real-world (Sim2Real)

Tenner

W

& 1. Al assistant exploring different modes of co-learning for train re-dispatching

DB

K3 SBB CFF FFS

2. Al-based system that makes re-dispatching decisions in a fully automated way

1. Airspace sectorization assistant

]
TUDelft

2. Flow & airspace management assistant
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