

Al fundamental blocks – beta release

Deliverable D2.2

Distribution level: Public Version: 1.0 Date of delivery: 29/03/2025

AI4REALNET has received funding from <u>European Union's Horizon Europe</u> <u>Research and Innovation programme</u> under the Grant Agreement No 101119527, and from the Swiss State Secretariat for Education, Research and Innovation.

ai4realnet.eu

- Politecnico di Milano (POLIMI)
- Fraunhofer Institute/ University of Kassel (FHG/UKASSEL)
- INESC TEC
- IRT SystemX (IRTSX)
- University of Amsterdam (UVA)
- enlite Al

Distributed RL

Main developer: POLIMI

Outline

• Context

Methodology

- Original Contribution
- Overview of repo structure
- Algorithm #1
- Algorithm #2

Definition

Distributed Reinforcement Learning (DRL) is a distributed learning process to solve a sequential decision-making problem

Motivation

Large-scale networks are characterized by a large number of state and action variables that make the standard RL algorithms impractical/inefficient (*curse of dimensionality*)

Use cases

Power grids, railway networks and air traffic networks can be operated with **distributed agents** that observe and control small portions of the environment and cooperate to achieve a shared objective, e.g., prevent blackouts, avoid traffic congestions

Methodology

• Main idea = Identify in a *data-driven way the decentralized decomposition* of the problem that minimizes the introduced bias

• Preliminary experiments on Grid2Op, Flatland

- Algorithm #1 | State and Action Factorization (SAF)
 - Short description: Creation of smaller Markov Decision Problems starting from a single MDP
 - State-of-the-art: Distributed control theory¹, power grid segmentation²
 - **Contribution:** First data-driven method for the factorization of control problems
 - Implemented WP2 features: Distributed RL
- Algorithm #2 | Distributed Q-learning (DQL)
 - Short description: Distributed version of the standard Q-learning algorithm
 - State-of-the-art: Other distributed RL algorithms³
 - **Contribution:** Proposed specific implementation for turn-based MDPs
 - Implemented WP2 features: Distributed RL

1 Lunze, Feedback Control of Large-Scale Systems (1992)

2 Marot et. al., Guided machine learning for power grid segmentation (2018)

3 Kar et. al., QD-Learning: A Collaborative Distributed Strategy for Multi-Agent Reinforcement Learning Through Consensus + Innovations (2012)

Overview of repository structure

The code is composed of two different folders, each containing one algorithm

- *istributed_q_learning* contains the code for the Distributed Q Learning algorithm (DQL)
- *for state_action_factorization* contains the code for the State and Action Factorization algorithm (SAF)

A description of how to use the code is provided separately in the README file of each folder.

Authors	Institution
Gianvito Losapio	POLIMI
Marco Mussi	POLIMI
Alberto Maria Metelli	POLIMI
Marcello Restelli	POLIMI

Algorithm #1 State and action factorization

State and Action factorization

1. Collect a dataset of transitions from the original MDP

2. Compute the matrix of Mutual Information (MI) between pair of variables

(estimated on the dataset \mathcal{D})

3. Transform it into a pseudo block-diagonal matrix. Each block is an independent MDP

• String identifying Grid2Op environment

• number of episodes and number of samples used to extract data from Grid2Op

• threshold for the adjacency matrix

- one folder for each substation containing the data extracted from the Grid2Op environment
- three different versions of the adjacency matrix (original, shuffled, unbiased)
- a plot of the final diagonal matrix in which blocks corresponds to MDPs

Experiment

• Tested on Grid2Op, environment IEEE case14 benchmark (14 substation, 20 lines, 6 generators, 11 loads)

• The grid is split into two parts. The results are the same as the domain-expert analysis [Marot et. al., Guided machine learning for power grid segmentation, 2018]

Algorithm #2 Distributed Q-learning

Distributed Q-learning

1. Each agent controlling a node

modified from the original Q-learning implementation [Watkins, 1992]

• Parameters of the Flatland environment (grid size, number of trains, ...)

• Hyperparameters of the DQL algorithm (learning rate, epsilon decay, ...)

• one folder for each hyperparameter configuration, containing the saved models, the parameters of the experiments, the cumulative rewards obtained during the training phase, the log file and the seeds.

• a global log file containing the computation time and the configurations of each experiment.

Experiments

10	10 10, 10 Albert 10 10 10 17 17
ないかたすなな書いた意いた意なってないたなないたってきないかです。そうない	**/*** ** *****************************
Ala ヤイマイニコス 自自自自自自 マンニマンシマママ Ala マイ Ala Ala Ala Ala Ya ヤイ Ala ヤ	
4/14/14/14/1 ···························	144 PT PT 0 0 4.0 0 10-10-144. PT
V man the state of the second	and the second s
W Jan Not No	and the formation of the second se
4/1 4/1 **	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
「マーヤマ山自企本企自知知行」ですればマヤヤマヤヤマルママル	(圖==4).4. 自自=自己会(4).
HA THE B B B B B TY AND THE TY AND HALFY AND HALFY AND HALFY TY TY A	1 - 1/4 - 2 - 2 - 4/4 - * 4/4
4/4 4/44/44/4?#?#?# ?#?#?#4/44/4 4/4?#4/4+??#4/4+??#?#/4??#? #? #? #? #? #/44/	1 7 4/1 74 4/1 77 77 74 74 4/1 77 74
** Allasha ** ** *****************************	
** • • • • • • • • • • • • • • • • • •	1 4 4 7 4 4 7 4 4 7 4 4 7 4 4 4 7 4
** 🚓 4/4 ** 4/4 ** 🚊 🔄 ahu ** 🔤 🕈 ahu ** ahu ** ahu ** ahu *** ahu *** ahu *** ahu ***	17 7 4/44N4 77 4/44/4 T- 4/4 77
et et alladia et to lea alla to sea et et alla to et alla to et alla to et alla to to alla da to do alladia et alla to	14/4 की की रेज की स्थान की रेज की 4/4 रेज
** ***********************************	TT TT ANA WA
	A/44/4 *** 4/4 ***
	Maddigat */ 4 2 ML
····································	4N4-FA
AT THE TRANSFERENCE IN THE TRANSFERENCE TO THE SECTION OF A SECTION OF	
	7.5 6 Marsh 07 H 7.5 6 Marsh 07 01
of 4/1 2 + 4/1 (> + + + + + + + + + + + + + + + + + +	to to to to to to tot.
2.7 . 4/4 14. 4/4 4/4 4/4 10 4/4 14. 27 4/4 4/4	AND 12 1 10 10 10
4/14/14/172 = 3 A	75 4/2 47 75 47 4/2 75 47 4/2 75 4/24/2
To at at make & at a to be at a start to de Marks at at the Marks at at	1
Wattan a fe	Te Te tet te Te tet Te Te Te Te te tet
44 + 12 + 2 + + + + + + + + + + + + + + +	TT TT Manthadillan Washin TT TT
124/1 12 = 1 T E 4/1 10 17 4/1 12 12 12 11 11 11 12 14	170 47 4/4 70 47 47 70 47 47 47 47 47 47
Massa Warde Black Band Band Band Band Band Band Band Band	ALLALAL TY TY TO AT TO AN ALLALA
リレンシンション 二日 日 マイ マイ シンシャイ マン アンシンマイ シンシン マンシンシー マンシンシー	**************************************
** # +++++ ** +++= +++++++++++++++++++++	and the shall be to the the stand the shall
\$\$ \$\$ \$\$ \$\$ \$444\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$\$\$ \$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
** A ** ** 4/4444 ** ** ** ** ** ** ** ** ** ** ** **	" 4/2 TT ANA 4/2 10 TT TT ANA 10 TT

one agent for each junction node

- Tested on Flatland grid 40x40 with 5 trains, 7 stations
- Hyperparameters: epsilon decay, learning rate, learning rate decay
- Convergence to optimal solution, i.e., all the trains arrive at destination with no delay.

https://github.com/AI4REALNET/distributed_rl

Explainable and Transparent Failure Prediction of Agents

Main developer: Fraunhofer/UKASSEL

Authors

Authors	Institution	
Mohamed Hassouna	Fraunhofer/UKASSEL	

Definition

Failure prediction is proactive forecasting of imminent power grid disruptions based on the observed state of the grid and the behavior of the employed DRL agents.

Motivation

Despite the abundance of DRL agents proposed for power grid topology optimization, most studies concentrate on performance metrics like survival scores without investigating why these agents fail. Identifying failure types and foreceasting failures enable awareness for timely human interventions.

Use cases

Power grids, railway networks and air traffic networks agents can be anaylsed with regard to failure prediction as well as analysing their behavior and clustering common failure types.

Methodology

• Main idea = Understanding agents' failures by interpreting failure types and developing a multi-class forecasting framework that predicts imminent grid disruptions, providing actionable insights for enhancing grid stability.

• Extensive experiments for the power grid application using grid2op

- Algorithm | Failure Prediction
- Short description: Forecasting of grid failures under DRL agent control up to 25 minutes in advance using Boosting algorithms as well deep learning. Analysis of feature importance, identifying crucial grid regions
- State-of-the-art: Only cascading failure prediction models (without agent control) [1]
- **Contribution:** Novel application of failure prediction for grids under control of DRL agents
- Implemented WP2 features: Behavior Analysis, Explainability.

[1] Islam, Md Zahidul, et al. "Cyber-physical cascading failure and resilience of power grid: A comprehensive review." Frontiers in Energy Research 11 (2023)

Motivation & Approach

- Deep Reinforcement Learning (DRL) agents provide recommendations for actions in a black-box manner with no insights on confidence
- Alert operator sufficiently early with increasing certainty that AI agents are about to fail
- Generate data from following the recommendations of DRL agents and train models to predict cascading power grid failures based on the oberservations and the agent index/type
- Identify critical features and regions to enhance the global interpretability of grid failures.

- Dataset for training models: available at the following Zenodo link: https://zenodo.org/records/13948340
- Input for each model: Grid2op Observation (l2rpn_wcci_2022 environment) of a IEEE 118 transmission grid
 - E.g., generator injections, loads, line status, line loading (ρ) and cooldown, temporal data (weekday, hour), agent type (i.e. which agent was used to collect this data point)
- Format: Numpy / Torch Tensor

Output data

Multi-class prediction of failure

- A prediction on whether the power grid is about to fail, e.g. cascading failure is about to happen in 5, 3, 1 timesteps , i.e., 25min, 15min, 5min, or alternatively a no-failure (i.e., survival) prediction
- Mutliple models: Boosting models vs. feed-forward neural networks
- Output type
 - Boolean (Failure vs. Survival)
 - In case of failure: Degree of imminency (i.e., failure in 25min, 15min or 5min)

Analysis of the global importance of features according the best model (LightGBM)

- Identify critical features that influence the stability of the power grid.
- Highlight critical regions of high importance in the power grid

Experiments

Comparison of 5 different models

- 2 Neural Network Architectures: Feed-forward NN, GANDALF [2]
- Neural Network models underperform, LightGBM performs best.
- Indicates a challenge for neural networks to capture feature representations

	accuracy	balanced accuracy	f1 micro	binary accuracy	OOD balanced accuracy	OOD binary accuracy
RF	0.73	0.62	0.73	0.82	0.61	0.82
XGBoost	0.80	0.73	0.80	0.83	0.73	0.83
LightGBM	0.82	0.76	0.82	0.87	0.76	0.87
FNN	0.79	0.73	0.79	0.84	0.73	0.84
GANDALF	0.79	0.72	0.79	0.84	0.72	0.83

Source: Lehna, M., Hassouna, M., et al.: Fault detection for agents on power grid topology optimization: A comprehensive analysis (2024)

Source: Lehna, M., Hassouna, M., et al.: Fault detection for agents on power grid topology optimization: A comprehensive analysis (2024)

Average probability distribution of the LightGBM model for the ground truth survival, failure in 5 steps, failure in 3 steps and failure in 1 step. The probability output is averaged for all observations in a validation set. The results indicate a higher uncertainty for the model in separating between the survival and failure in 5 steps class, indicating that long-term failures are harder to detect.

[2] Joseph, M., Raj, H.: Gandalf: Gated adaptive network for deep automated learning of features (2024)

Experiments – Feature Importance Analysis (1/3)

Evaluation Method

- Used the gain metric to measure how much each feature improves accuracy.
- Helps understand key patterns and relationships in the data.

Top Features

- 16 out of 30 top features are ts_overflow (time since line overload) → strong instability indicator.
- Descriptive Features (e.g., current step, minute of hour, hour of day) show that grid failures follow temporal patterns.
- Agent Type ranks 17th → Highlights different survival behaviors between agents
- Only 2 load/gen features in the top 30 → Grid stability may depend on singular or few generation/consumption fluctuations.

Dominance of line features

• Many features correspond to the same critical lines.

Source: Lehna, M., Hassouna, M., et al.: Fault detection for agents on power grid topology optimization: A comprehensive analysis (2024)

Experiments- Failure Prediction (2/3)

Source: Lehna, M., Hassouna, M., et al.: Fault detection for agents on power grid topology optimization: A comprehensive analysis (2024)

Experiments – Feature Importance Analysis (3/3)

Region A (High-Risk Line & Load Dependency)

- Line between substations 21-22 is frequently attacked, leading to cascading failures in 3 steps.
- □ Occurs in 4057 out of 39635 cases

Region B (Key Sub-Grid Connection)

- □ Line between substations 68-76 links two sub-grids, carrying high power flow.
- □ Generator 37 frequently spikes to 500% of its starting power.
- □ Lines 79-80 and 76-79 are critical for power routing

Region C (Frequent Adversarial Attacks)

- □ 10 out of 23 adversarial line attacks occur in this sub-grid.
- □ High-load lines (e.g., 58-62, 62-63) are frequently attacked, disrupting load supply.
- □ Three of the top 10 most important loads are in this region (substations 50, 52, 56).

- Major dependencies: Grid2op, pytorch, pytorch lightning, pytorch tabular, sklearn, xgboost
- Download the dataset and place according to the readme.
- To train the models: Run {model}_hyperparam.py
- To evaluate the the models: Run Metrics.ipynb for Boosting models, and cemc_final_metrics.py/gandalf_final_metrics.py for the neural network models.
- Run the Lightgbm.ipynb Notebook to generate Feature importance plots

https://github.com/AI4REALNET/failure_prediction

Human Assessment Model

Main developer: INESC TEC

Authors

Authors	Institution
Duarte Dias	INESC TEC
Adriana Arrais	INESC TEC
João Paulo Cunha	INESC TEC

Definition

Human Assessment Model (HAM) aims to provide a real-time quantification of the cognitive and stress level of the operator to support the level of autonomy of the system in a seamless and implicit way – without interacting with the operator.

Motivation

If the system automatically, without any direct intervention of the human (implicit interaction), is able to adapt itself to the operator we believe it can contribute for a higher level a empathy and trust with the AI system, leading to a higher acceptability.

Use cases

Power grids, railway networks and air traffic networks can be integrated with HAM. It is not depedent of the use case, only on which use cases the tune autonomy level system will be integated.

Main idea = Create a Human Assessment Model

The creation of a personalised model is essencial, since response to stress differs between individuals.

• **Preliminary experiments:** Development and optimization of cognitive performance assessment based on ECG features. Dataset from 11 Air Traffic Controllers was used from previous data collection (2018, Rodrigues et al.).

• Algorithm #1 | Personalised Human Assessment Module

Algorithm #1.1 | Quantification of Cognitive Performance

- Short description: Personalised regression to quantificatify cognitive performance from electrocardiogram.
- State-of-the-art: Modulation of cognition in ill individuals ¹.
- **Contribution:** Novel method to modulates cognitive performance from ECG physiology.
- Implemented WP2 features: Human Cognitive Performance Assessment.
 Algorithm #1.2 | Classification of Stress Level
- Short description: Personalised classification of stress from electrocardiogram.
- State-of-the-art: Non-personalised modulation of stress ^{1, 2}
- **Contribution:** Novel method to modulates stress from ECG physiology on working environments.
- Implemented WP2 features: Human Stress Assessment.

1 Rykov et al., Predicting cognitive scores from wearable-based digital physiological features using machine learning: data from a clinical trial in mild cognitive impairment (2024) 2 Fernandes et. al., HealthSense: Unobtrusive Continuous Stress Monitoring Using a Novel Dual Ecg-PPG Patch (2024)

- **Real-time Implementation** | Algorithm real-time implementation
 - Short description: Real-time implementation of human assessment cognition and stress.
 - State-of-the-art: There are no solutions that use ECG to predict cognition. Other approached have more complex data gathering (Ex. EEG) ^{3, 4}.
 - Contribution: Novel method to modulates cognitive performance and stress from ECG physiology in real-time, in working environment.
 - Implemented WP2 features: Human Cognitive Performance and Stress Assessment.

3 Cogwear. (2023). Cognitive state assessment using wearable EEG technology. Retrieved February, 2025, from https://cogweartech.com/ 4 EMOTIV. (2025). How EEG tech aids workplace wellness. Retrieved February, 2025, from ht<u>tps://www.emotiv.com/blogs/news/workplace-wellness-using-eeg-technology</u>

Original contribution (3/3)

Algorithm #1

Stress and Cognition Assessment Protocol

Model Personalisation

This Block Diagram gives the generic overview of data flow, from the dataset input to the predicted human stress and cognition levels.

The implementation is divided in two main phases:

- 1. Model Personalisation (Algorithm #1): Modelling of cognition of stress for each individual.
- 2. Model Implementation (Real-time Implementation): Real-time implementation of model.

CRTT: Choice Reaction Time Task ; T\$ST: Trier Social Stress Test; ECG: Electrocardiogram; CP: Cognitive Performance.

Block Diagram – Algortihm #1 (2/3)

Block Diagram – Real-time Implementation (3/3)

* Source code is under analysis for license and sharing on project repository – estimation for sharing is mid-March.

Input data (Algorithm #1)

• These raw datasets were created from data gathered following a specific protocol described in <u>Rodrigues et al. (2018)</u>

• Tests Performed:

- **Baseline**: Sit comfortably for 10 minutes.
- **2-Choice Reaction Time Task (CRTT)**: A selective-attention task where participants identified either the large, global letter or the small, local letters of a hierarchically organized visual object. Response time and accuracy were recorded.
- Trier Social Stress Test (TSST): An acute psychosocial stress paradigm.

• Task Order: Baseline \rightarrow CRTT1 \rightarrow TSST \rightarrow CRTT2

 Psychological scale assess 	Keys	Description				
	i sychological scale assess	ECG	Raw electrocardiogram (ECG) signal.			
•	File Format:	VAS	Visual Analogue Scale rating (self perception of stress).			
	• File Type: .json	STAI_6items	State-Trait Anxiety Inventory (6-item version) score, measuring anxiety levels.			
		Right_ans	Correct responses.			
		Answers	Responses provided by the participant.			
		Answer_reaction_time	Time taken (in seconds) to respond.			
		Answer_timing	Time when the visual stimuli was presented (initiating in the beginning of each CRTT task).			

Output data (Algorithm #1.1)

\rightarrow

Selected Features:

['nni_20', 'cvnni', 'sdnn', 'std_hr', 'lf']

bayesian_regression

Fitting 2 folds for each of 256 candidates, totalling 512 fits Best parameters: {'alpha_1': 0.001, 'alpha_2': 1e-06, 'lambda_1': 1e-06, 'lambda_2': 0.001} R2: -0.02528120940270844 RMSE: 0.27385694596104804

linear_regression

Fitting 2 folds for each of 2 candidates, totalling 4 fits Best hyperparameters: {'fit_intercept': False} R2: -0.15371996517932374 RMSE: 0.2905042334870019

polynomial_regression

Fitting 2 folds for each of 6 candidates, totalling 12 fits Best hyperparameters: {'linearregression_fit_intercept': False, 'polynomialfeatures_degree': 2} R2: -3.6881123071068664 RMSE: 0.5856002656927668

KNRegression

Fitting 2 folds for each of 2496 candidates, totalling 4992 fits Best parameters: {'leaf_size': 20, 'metric': 'euclidean', 'n_neighbors': 14, 'p': 1, 'weights': 'uniform' R2: -0.11750671486611997 RMSE: 0.28590867463672137

SVRegression

Fitting 2 folds for each of 384 candidates, totalling 768 fits Best parameters: {'C': 100, 'degree': 2, 'epsilon': 0.01, 'gamma': 'scale', 'kernel': 'linear'} R2: -0.11817947540526408 RVFS: 0.2559947279498761

ridge_regression

Fitting 2 folds for each of 10 candidates, totalling 20 fits Best alpha: 0.46415888336127775 R2: -0.09260223770006615 RMSE: 0.28270487945282163

. . .

huber_regression

Fitting 2 folds for each of 75 candidates, totalling 150 fits Best parameters: {'alpha': 0.0001, 'epsilon': 2.0, 'max_iter': 1000} R2: -0.09945050952403012 RMSE: 0.28358947201544693

RANSAC_regression

Fitting 2 folds for each of 9 candidates, totalling 18 fits Best parameters: {'min_samples': 0.1, 'residual_threshold': 1.0} R2: -0.08736475847157554 RMSE: 0.28202648087091164

Best Model

Model: bayesian_regression RMSE: 0.27385694596104804 Insert a numeric code to identify the controller:

ile 'model_C12.pkl' save with success in personalised_models\model_C12.pkl

Saves in defined folder: - Python **Pickle file** with **personalised algorithm**

Experiments

Algorithm #1.1 | Quantification of Cognitive Performance

11 Subjects

Stress and Cognition Assessment Protocol (dataset collected previously as described in 2018, Rodrigues et al.)

Model Personalisation

- Features design and optimisation
- ECG Features : HRV & fiducial features (41)
- Personalised physiological normalisation
- Cognitive performance metrics
- ML-Driven Quantification Models

Best Model Model: bayesian_regression RMSE: 0.27385694596104804 Insert a numeric code to identify the controller: 12 File 'model C12.pkl' save with success in personalised models\model C12.pkl!

Link to the repository

Link to the repository: https://github.com/AI4REALNET/d2.2-human-assessment-module-v0.5

Graph Neural Solver: Power Grid

Main developer: IRTSX

Authors

Authors	Institution			
Milad Leyli-abadi	IRTSX			

Outline

• Context

Methodology

- Original Contribution
- Overview of code structure
- Experiments

Definition

Graph Neural Solver is a machine learning algorithm assisted (informed) by physics knowledge for compliance to physical constraints imposed in a Power Grid

Motivation

Each industrial domain has its set of constraints that should be respected in addition to classical machine learning evaluation criteria, and this implementation allows to integrate these constraints in the loss function of the Neural Networks

Use cases

This implementation is specific to Power Grid domain and enables the prediction of active powers from the injections in the substations (nodes of the graph). It could motivate the future implementations for decision-making in the context of RL

Context

• Currently used physical simulators

• Inputs / outputs

Context

• Currently used physical simulators

• Inputs / outputs

- Characteristics
 - Relies on physics equations (Kirchhoff law), resolved by iterative optimization (Newton-Raphson)
 - Able to predict in a normal condition or different grid conditions

Power Grid equations

$$D = -p_k + \sum_{m=1}^{K} |v_k| |v_m| (g_{k,m} \cdot \cos(\theta_k - \theta_m) + b_{k,m} \sin(\theta_k - \theta_m))$$
 Active power;

$$D = q_k + \sum_{m=1}^{K} |v_k| |v_m| (g_{k,s} \cdot \sin(\theta_k - \theta_m) - b_{k,m} \cos(\theta_k - \theta_m))$$
 Reactive power

- Need \rightarrow Simulations allowing to predict the grid state in real time with respect to
 - Action (topological changes)
 - Exogenous factors (wind, temperature, anomalies, etc.)
- **Problem** \rightarrow Physics simulation are computationally intensive
 - Need to accelerate the simulation [x100 à x1000]
- Solutions → Approximation of physical simulations using machine learning
 - The use of Physics Informed Neural Networks to ensure physics compliance
- Objective → Trade-off between computation time and model's quality

Problem setup

- Physical simulator → DC approximation
- Scenario → Risk identification (allowing the disconnection of power lines and topology reconfiguration)
- Contribution → Predict the active powers at power lines using a Hybrid Machine-learning based model exploiting physical constraints (local conservation law)
- Evaluation pipeline → Learning Industrial Physical Simulation (LIPS) framework with four categories of evaluation criteria

Methodology

• Main idea = Consider a physical constraint as the objective function of Neural Networks (GNN) that should be optimized during the training and used for the estimation of the parameters

• **Preliminary experiments** on a toy usecase which could inspire the future works for AI4REALNET usecases on how include the physics knowledge in the learning algorithms

Methodology

• Hybrid models : Physics Informed Graph Neural Networks (PIGNNs)

• Compliance to physics criteria / laws by integrating the local conservation as the optimization criteria (non-supervised learning)

ID	Туре	Measure	Description
		Basic	
P1	Current positivity	$\frac{1}{L} \sum_{\ell}^{L} 1_{(\hat{a}_{or,ex}^{\ell} < 0.)}$	Proportion of negative current
P2	Voltage positivity	$\frac{1}{L} \Sigma_{\ell}^{L} 1_{(\hat{v}_{or,ex}^{\ell} < 0.)}$	Proportion of negative voltages
P3	Losses positivity	$\frac{1}{L} \Sigma_{\ell}^{L} \mathbb{1}_{(\hat{p}_{\ell x}^{\ell} + \hat{p}_{or}^{\ell} < 0.)}$	Proportion of negative energy losses
P4	Disconnected Line	$\frac{1}{L_{disc}} \Sigma_{\ell_{disc}}^{L_{disc}} \mathbb{1}_{\{ \tilde{x}_{\ell x}^{\ell} + \tilde{x}_{\ell r}^{\ell} > 0.\}}$	Proportion of non-null <i>a</i> , <i>p</i> or <i>q</i> values
P5	Energy Losses	$\frac{\sum_{\ell=1}^{L} (\hat{p}_{\ellx}^{(\ell)} + \hat{p}_{0T}^{(\ell)})}{Gen} \in [0.005, 0.04]$	energy losses range consistency
		Uni-dimension law	
P6	Global Conservation	$MAPE((Prod-Load) - (\sum_{\ell=1}^{L} (\hat{p}_{ex}^{\ell} + \hat{p}_{or}^{\ell})))$	Mean energy losses residual
P7	Local Conservation	$MAPE((p_k^{prod} - p_k^{load}) - (\sum_{l \in neig(k)} \hat{p}_k^{\ell}))$	Mean active power residual at nodes
P8	Voltage equality	$\sum_{\substack{i,j \\ i,j \in k \\ i \neq j}} \mathbb{1}_{\{ \nu_i - \nu_j > 0\}}$	Proportion of not equal voltages at nodes

Overview of code structure

License (Mozilla Public License) that is used currently General overview and instructions to install dependencies

Configurations files used for initializing scenarios (two different l2rpn environments) and also the models (gnn.ini)

Getting started jupyter notebooks providing examples to generate data and reproduce the results

The Physics Informed GNN package, including dataset, evaluation and gnn modules

Input data

The data generated using a configuration file associated with a specific environment (2 envs):

- L2RPN_case14_sandbox: A toy environment including 14 nodes and 20 power lines
- l2rpn_neurips_2020_track1_small: A more complex environment including 38 nodes

The environment to use and paths to the cofiguration and dataset directory

Specify the number of required data

NB_SAMPLE_TRAIN = 1e2 NB_SAMPLE_VAL = 1e2 NB_SAMPLE_TEST = 1e2 NB_SAMPLE_OOD = 1e2

The script to generate the dataset

Input data

The hyperparameters of the graph neural solver to be adjusted using two methods:

Using an existing configuration file

Set them directly as arguments at the

Quality of voltage angle estimation

"MAPE10": 0.00011485389095878186

• Results (The values are the violation percentage of the corresponding metric)

Test dataset	Loss target	Output	Disc lines	Loss pos	Energy loss consistency	Global conservation	Local conservation
FC	Р	Р	0.0	43	0.0	88	91
GNN	θ	Р	0.0	0.0	0.0	0.0	0.0

Test OOD dataset	Loss target	Output	Disc lines	Loss pos	Energy loss consistency	Global conservation	Local conservation
FC	Р	Р	0.0	43	0.0	95	93
GNN	θ	Р	0.0	0.0	0.0	0.0	3.08

- Improve the implementation of neural network based GNN which requires more training and layers to achieve the same performance as the GNN without NN
- Generalize the proposed approach for AC power flow simulation
- The physics compliance integration could inspire the algorithm design for batch 2 focusing on a control problem using Deep Reinforcement Learning algorithms
- Integrating the simplified physical equation and expert knowledge into RL agents which should suggest remedial actions with respect to observed context (environment)

https://github.com/AI4REALNET/T2.1_graph_neural_solver

Neural Prioritized Planning: Flatland

Main developer: UvA

Authors

Authors	Institution
Herke van Hoof	UvA
Marius Captari	UvA

Definition

Multi-Agent Path Finding (MAPF) involves finding collision-free paths for multiple agents in a shared environment.

Motivation

Efficiently scheduling agents in congested networks (e.g., railway systems) is crucial for minimizing delays and optimizing flow. While optimal solvers do exist, they **fail to scale** to problems with more than a few dozen agents. More scalable solvers are needed.

Use cases

Railway networks: Scheduling and routing trains. Ability to quickly replan on case of train breakdowns.

Motivation: small scale example

- Plan Agent 1 greedily, by using shortest distance to goal
- Agent 2 has to avoid collision with Agent 1

- **Prioritized Planning** (PP) is such an algorithm, that plans agents in sequence, based on the assigned priorities.
- Often times, PP it is **not** optimal.

Motivation: small scale example

- In this example the optimal path is for Agent 1 to take the slightly longer route, while Agent 2 takes the much shorter one.
- Makespan = max length of all paths
- Flow-time = sum of length of all paths
- However, computing such optimal solutions for large scale environments is **not scalable**.

Methodology

Main idea = learn graph edge weights representation such that Prioritized Planning (PP) finds solutions that are closer to optimal, while still planning in a greedy way.

- Conflict Based Search (CBS) (Sharon, Guni, et al. 2015) is used to generate optimal paths.
- In order to get a meaningful gradient based on the computed loss, we use the method proposed in Vlastelica et al., 2019 which allows for the **Differentiation of Blackbox Combinatorial Solvers**.
- The main training loop is as follows:
 - 1. Generate optimal CBS paths.
 - 2. Compute initial PP paths on cost 1 graph.
 - 3. Calculate usage discrepancy using Hamming distance or similar metric.
 - 4. Update edge weights using the differentiable solver.
 - 5. Re-run PP with updated weights.
 - 6. Iterate until convergence or a fixed number of iterations.

Methodology: back to the small scale example

- Using the proposed methodology, we can learn to assign updated weights to edges in our first example.
- This way the **updated input graph** allows PP to find the optimal path, given this fixed set of priorities.
- PP still plans **greedily** in a fast way, since the input is the only change.

(in)(🎔

Preliminary experiments on Flatland

• On 30x30 Flatland maps, overall **mean flow-times** over 100 seeds for each configuration:

	Mean Flow-time		
Number of agents	CBS	РР	Trained PP
3	59.75	60.74	60. 38
7	140.86	144. 39	143.03
11	224.33	230.14	227.67

Preliminary experiments on Flatland

• Filtered mean flow-times (only cases when flow-time of PP > CBS):

	Mean Flow-time		
Number of agents	CBS	PP	Trained PP
3	56.65	60. 83	59.30
7	137.90	145. 42	142. 52
11	214.81	224.76	220. 52

Example on 30x30 Flatland map with 4 agents

- End Stations are represented with a 🔺 , the numbers represents which agents has to finish there.
- <u>Start</u> Stations are represented with a ___, the numbers represents which agents start there.
- PP with the updated weights re-routes **Agent 0** through the middle rail, instead of the bottom one.
- Agent 0 paths:

PP Trained (matches CBS Agent 0 path)

Agent 0: du	uration=20 (t=2->t=22)
0+1/12/13-4-5+6/17-8+9/110111	2 13 14 16 18 17 18 18 20 21 22 23 24
All and the state of All of All of All of All of Al	124/2 000 00 A/2 + A/2 75 77 47 75 00 A/2
20 - 1 20 - 1 4/4 + 20 20 + 20 4/4 + 2	2 7 2 4/44/44/4 T TT TT TT 47 4/4 TT TT
3/1 + 75 75 + 4 4/1141 + + 75 000	ALMANNIA TO TO ALL TO LULALLAND
4, +1, ++ 7, 7, +4/2 ++ ++ ×/2 +/2 +/2 +/2 +/2 +/2 +/2 +/2 +/2 +/2 +	ノムママ キノムママ ママ ママ ママ キノムママ キト
51 - 12 + 12 Alla	A ToTOTOTAL TOTAL + A/L + A/L + A/L
6+* +* +* +* ===========================	4/4 +T 9+ +T 9+ 4/4 +T 9+ 4/4 +T 9+ 4/4
77 daublen 17 st. 2 2 2	the Alash, at at 25 the Alash, 27 thereit
5.7 17 ALANTE C	
8.7 1 M. 7.7 AM. 7.7 MA 0.2 13	74 Tot + + + + + + + + + + + + + + + + + + +
10 Tat at at a a	?=**/&?=********************************
17 A MARCE # 1 1 1 2 1 2	
12 9 - 0 - A/A 4/A 9 - A/A + A/A 4/A 9 -	4/4 77 4/4 77 74 4/4 77 74 4/4 77 74 4/4
17	145 WASH, 747 97 747 747 Mandelma 97
T# 4/4 T# #T 4/4 #T 4/4 T# T# == #T #T	T# T# T# ##/14/14/14/14/14/14 #T #T #T T#
10	242 T 2424/22424/2242 Mar 4/2
19-4/47-27-27-4/44/4	ቸው የው የው ተኛ ተኛ ትላል የው የው ተኛ ትላልትላል የው
17. 14. 4/ A 24. 4/ A 24. 4/ A	A 24 4 27 24 24 24 27 27 27 4/4 24 27 4/4
19-4/4 +1 +1 +1 +2 +2 +	**** T#* #Y& TT #Y& TT T#* #/& T#* #/& TT
1917+ 7+ 4/4+* +* 7+ 1 2+ Committee	*** T#*** +* T#*ANLT#*** AVLT#***
20 7 4/4 7 - 7 - 7 4/4 7 -	
214 +* 4/4 +* 4/4 4/4 5/2	THE PART AND THE PARTY AND THE PARTY
22*4/4 ** ***4/4 ** ***	
233 4 4 7 7 7 7 1 4 4/4 7 7 7 7 1	
241 + 7 4/14/1 +7 4/14/1 4/15	2 1 = TV 17 17 VAL 17 TV
25	**** *********************************
201 T- + T 4/4 T- + T 4/4 + A/4	
2/4 +* 4/4 4/4 +* +* 4/4 4/4 4h4 ** 1	
24.11 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	TT TO TO TO TO TO TO TO TO
ZPLAN TT ANA TT INT	TANA 4/2 T 4/2 - AVA - AND AND AND AND

Preliminary experiments on Flatland

So that Agent 1 can take the shorter route (20 length) using the updated weights, instead of the old PP route (22 length) to arrive at the goal, avoiding the conflict with Agent 0:

Original PP

Agent 1: duration=22 (t=12->t=34) 0 - 1/ 2/ 3 - 4 - 5 - 6/ 7 - 8 - 9/ 10 11 12 13 14 16 16 17 18 18 20 21 22 23 24 Va + 4/4 + 4/4 + 4/4 + 4/4 + 4/44/4 + 4/4 + 4/4 + 4/4 + 4/4 + 4/4 23 47 73 47 4/ 47 73 73 47 73 4/4 47 73 73 4/44/44/4 47 47 47 47 47 4/4 47 7 AVA 444 77 47 70 disal disalities እን የመቆለል ቀና ቀና <mark>አለፈ አለፈ አለፈ አለፈ የ</mark>መቀና አለፈ የመንግ ቀና የመቀና አለፈ የመቀና A 75775744, 7574/4 +7 4/4 +7 4/4 THE MANAGEM AVA TT TOT TT TOTAVA TT TOTAVA TT TOTAVA T 3 3 4 4 4 4 4 N 🛱 100 444 2 AVEAN, PT TO AVEAN, TO MANN To To To TANA 4/4 TO TT TT ANA 4/4 Rocks T# 4/4 T# 11 A/4 T# T# 17 A/4 T# 4/4 T# 1.57 5 77 414 - 77 14414 7-7414 4/4 77 4/4 77 TJA/1 OT TJA/1 OT TJA/ TANA TH 19 40 A TOT TT ANA TT ANA +T 4/4 +T 1 16- 4/4 T. T. T. T. T. A/AA/ 174244 41 AAMA 41 2 AMA 41 19, 7 - 7 - 4/4 - 7 - 7 -107070 11 1- 1- 1- A/A 7.5 上書な書 2,14 - A/4 - A/4 - A/4 2. 77 22 4/4 77 7-5-414 77 7-5 -----7-7 - A/A 07 100 - T+ AN 4/42-2 •/ 14444 Tot Tot AVA 98 281 Tot of A/A Tot of A/A = == A/A Tot @ The second se 274 - + 4/4 4/4 - + + + + + + + + + + + + + + = = The second secon 28 A/A +T 7 A/A +T +T A/A 7 +T == 281 + + +++++ - 7.5

PP Trained

Agent 1: du	ration=20 (t=12->t=32)
0+1/12/13-15+6/17-8+9/110.111	2 13 14 16 16 17 18 18 20 21 22 23 24
A/A + 7+ A++ A/A + A/A + A/A + A/A + A/	LANA MARINE AVA TO AVA TO TO TO ALLANA
2 - + 7 - + 144 + 7 7 - 7 - 7 - 444 + 7 7	ST TO A/AA/AA/A TO TO TO TO A/AA/AAT TO
3/4 + 77777 + 1 1/444 + 7 + 77 100	ALMANDER TO TO ALL TT ANALALAN TO
4 + 4/4 77 7 + 7 + 4/4 + 7 + 4/4 4/4 4/4 4/4 4/4 4/	14 የውቀት A/A የውየው የውቀት ቀት የውቀት A/A የውቀት
51 - 12 + 12 6 L	A 2272 22 ANS 22 27 A/A - A/A + A/A
6- + + + + + 1 104/44/4 == 4/14/4 ==	4/4 +T 7+ +T 7+ 4/4 +T 9+ 4/4 +T 7+ 4/4
7* mantitus ** alla 🔁 🗮 📰	Alasha TT TT A Alasha TT MAN
8.7 **	
Statu Tratu Tor into an a	Tet Tet at at analy Tet at at analy
10 far ef ef 📄 🖬 🗍 🏹 🖓 📖	Parada 74 77 4/4 74 97 97 4/4 77 4/4 77
12 4444	and the total of the state of all state
12 7 7 7 7 44 4 4/ 4 7 7 4/ 4 1 1 4/ 4 4/ 4	444 77 444 77 75 444 77 75 444 77 75 44
13	ALANA TO TT TO TO TO TANK MANDER TT
T# 4/4 T# 97 4/4 97 4/4 7# T# 97 97	T# T# T# \$4/44/44/44/44/4 97 97 97 T#
10 4/4 - 4/4 - 2 1	5%5 TT 2614/22014/22010 4/210 T-
10-4/4 7 - 7 - 7 - 4/44/4	ቸው የቁና የም ቀና ቀና ቁና ቆ/ ል የም የም ቀ/ ቆ/ ል የም
1744414/4AHLAVAAHLAVA	🍂 रेज का को रेज के का का भाष रेज को भाष
18 4/4 et et et et et e	Tot of Allert Allert Tot Alle Tot Alle Tot Alle T
1927-7-41297 + 7 T	77 75 97 47 75 444 75 97 4/4 75 4/4
20 7 4/4 7 - 7 - 1	
2/14 -** 4/14 -** 4/14 -= 4/18 === == 7+* ==	四日 日 ママママ コーニーションションション
22 4/4 +7 7+ 4/4 +7 7+7	ा 🛔 🛔 📖 हेर ने 144 हरे हेरे ने 7 रहे ने
23444 77 7 7 10 4/4 77 = 74	3 (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2
2/4 + + A/4 4/4 + + A/4 4/4 A/4 = 1	Tr + + + + + + + + + + + + + + + + + + +
25 - 7- 144 4/4 7- 7- 4/4 77 4/4	*** 4/4 *** 4N4 4/4 strand to 4/4 5N4 **
261 7+* +* 4/4 7+* +* 4/4 ===4/4 7+* A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
274 - A/AA/A + + + A/A A/AANA +	
20 4/4 ** ****** ** 4/4 ** **	Ter ter 19 19 19 19 444 19 19
291 + PT shy PT - Tot	TANA ANA TANA - AND ANA ANA ANA

Vs

Overview of code structure

- main.py is the entry point for running experiments
- CBS and PP implementation can be found under /solvers
- utils.py provides utility functions related to graph and instance processing
- /outputs stores outputs:
 - For single experiments: as **images** of the agent's paths overlaid over the flatland environment
 - For multiple experiments: **3 csv files** with path length statistics for each seeded run
- /tests includes all tests which can all be run using:
 - python -m pytest

Installation and running experiments

- The installation instructions can be found on the README. md
- Run single experiments using command line arguments:
 - python main.py -mode -solver [pp or cbs]
- To run a single training instance :
 - python main.py -mode train
- To run a set of experiments across multiple instances, over a set amount of seeds:
 - python main.py -mode experiments
 - The experiments parameters are stored in run_configs.json
- python main.py -help to get a list of all possible commands

Experiments input and output

- **Input**: Flatland instances, defined by the underlying graph structure and the collection of various agent's start and goal positions.
- For the experiments the specific input is given by the parameters found inside run_configs.json on the right ->
- **Output**: A **Plan**. A plan is a dictionary of **Agent_ID**: **Path** entries. A path is a list of tuples ((row, col), timestep), representing the positions of an agent at each distinct timestep.

30

🚯 run_configs.json 🛱 229 B

19

20 21

REALNET	

Perspectives

- Next steps:
 - OWorking in Flatland simulation:
 - Learn based on dynamic start/current positions of agents.
 - Edge weights as a function of the current agent positions
 - If breakdowns happen, **replan** using updated positions/weights.
 - Learned weights should reflect possibility of breakdowns.
 - OLearn to assign **priorities** (learn to rank approach).
- Future work:
 - OOptimal solvers such as CBS dont scale into more realistic scenarios with tens/hundreds of agents at the same time.
 - OHave an **Reinforcement Learning loss** instead of relying on expert optimal trajectories.

Link to the repository

Link to repository: https://github.com/AI4REALNET/flatland-blackbox

Maze-Flatland

Main developer: enliteAl

Authors

Authors	Institution
Anton Fuxjäger	enliteAl
Alberto Castagna	enliteAl
Marcel Wasserer	enliteAl

Maze-Flatland transforms the Flatland-rl environment into a **powerful AI training ground**, optimized for **AI-driven distributed decision-making** research and development.

Powered by Maze-RL, a robust library for applied Reinforcement Learning, Maze-Flatland goes beyond the concept of a wrapper with **built-in tailored functionalities**. Significantly **improving sample efficiency**, **reducing exploration cost**, leading to lower training time and boosting agent robustness.

MAZE GitHub - enlite-ai/maze: Maze Applied Reinforcement Learning Framework

https://github.com/flatland-association/flatland-rl

Outline

- Repository overview
- Environment architecture
- Multi-Agent formulation
- Wrappers
- Built-in masking logic
- Agent-Environment Interaction
- Maze-Flatland KPIs
- Offline Training
- Validation and Testing
- AI4REALNET Task 2.2 & 2.3
- Replicate the results
- Performance Comparison NN vs XGBoost
- Summary

(in) 🕑

Maze-Flatland – Repository Overview

- YAML-based configuration
- Extensive logging support
- > Automated testing
- Modular architecture
- > Designed for scalability and future extensions

Enables high-level action space's definition. MazeAction handles the conversion to flatland-like action.

Learn more at https://maze-rl.readthedocs.io/en/latest/environment_customization/customizing_environments.html

96

REALNE

Maze-Flatland – Multi-Agent Formulation

- MazeState is updated to point to the active train
- flatland-rl stepped, then rewards are computed
- Rewards are assigned to individual trains

Masking Wrapper

- Improve sample efficiency Agent avoids redundant actions
- Reduce exploration complexity Lesser choice to choose from and each of these have

an unique outcome

Skipping Wrapper

- Prevent unnecessary decision-making when actions lead to the same outcome
- Improve sample efficiency Agent is trained only on meaningful state transitions.
- Leading to faster learning and more robust policy

Rendering Wrapper

• Support custom visualization – allowing for different level of details

Masking Wrapper – Built-in Masking Logic

Phase 1 – single option

Phase 2 – multi-option decision

Decision Point (DP): A switch connected to a cell that cannot be reached from given the current train direction.

Maze-Flatland – Agent-Env Interaction

Agent queried only when there is more than one possible option

Learn more at https://maze-rl.readthedocs.io/en/latest/reference_docs/core_wrappers.html

Agent-Env Interaction – Sequence Diagram

Maze-Flatland KPIs – Overview

- Printed at console
- Collected and stored to csv file
- Supports tensorboard

KPIs Categories

- Runtime profiling → Time spent in each part of the system
- Reward and action logging
- Domain-specific events

step path				value
1/rollout_stats	ScheduleEvents	impossible_dest	mean_ratio	0.002
1 rollout_stats	ScheduleEvents	invalid_episode	mean_invalid_episodes	0.000
1 rollout_stats	EnvProfilingEvents	full_env_step_time	sub_count	25030.000
1 rollout_stats	EnvProfilingEvents	full_env_step_time	flat_mean	0.007
1 rollout_stats	EnvProfilingEvents	full_env_step_time	sub_mean	0.001
1/rollout_stats	EnvProfilingEvents	wrapper_step_time	mean/MazeEnvMonitoringWrapper	0.080
1 rollout_stats	EnvProfilingEvents	wrapper_step_time	mean/LogStatswrapper	0.011
1 rollout_stats	EnvProfilingEvents	wrapper_step_time	mean/TimeLimitWrapper	0.008
1 rollout_stats	EnvProfilingEvents	wrapper_step_time	mean/SubStepSkippingWrapper	0.087
1 rollout_stats	RewardEvents	reward_original	median_step_count	47.500
1/rollout_stats	RewardEvents	reward_original	mean_step_count	50.060
1 rollout_stats	RewardEvents	reward_original	episode_count	100.000
1 rollout_stats	RewardEvents	reward_original	std	35.624
1/rollout_stats	RewardEvents	reward_original	nean	-184.080
1 rollout_stats	RewardEvents	reward_original	nin	-315.000
1 rollout_stats	RewardEvents	reward_original	max	-96.000
1 rollout_stats	RewardEvents	reward_original	step_nean	-3.778
1 rollout_stats	ActionEvents	discrete_action	<pre>step_key_train_move/agent_0/ </pre>	[len:5006, µ:1.5]
1/rollout_stats	ActionEvents	discrete_action	<pre>step_key_train_move/agent_1/ </pre>	[len:5006, µ:1.6]
1 rollout_stats	ActionEvents	discrete_action	<pre>step_key_train_move/agent_2/ </pre>	[len:5006, µ:1.6]
1/rollout_stats	ActionEvents	discrete_action	<pre>step_key_train_move/agent_3/ </pre>	[len:5006, µ:1.6]
1 rollout_stats	ActionEvents	discrete_action	<pre>step_key_train_move/agent_4/]</pre>	[len:5006, µ:1.7]
1 rollout_stats	SkipEvent	sub_step	sum_skipped	18936.000
1 rollout_stats	SkipEvent	sub_step	mean_skipped	189.368
1 rollout_stats	BaseEnvEvents	reward	median_step_count i	33.000
1 rollout_stats	BaseEnvEvents	reward	mean_step_count	34.640
1 rollout_stats	BaseEnvEvents	reward	episode_count	100.000
1 rollout_stats	BaseEnvEvents	reward	std	35.791
1 rollout_stats	BaseEnvEvents	reward	nean	-182.568
1 rollout_stats	BaseEnvEvents	reward	nin	-314.000
1/rollout_stats	BaseEnvEvents	reward	nax	-92.000
1 rollout_stats	FlatlandDepartingEve.	departure_delay	mean_ratio	0,000
1 rollout_stats	TrainHovementEvents	n_trains	mean_n_trains	5.000
1 rollout_stats	TrainMovementEvents	trains_arrived	mean_success_rate	8.724
1 rollout_stats	TrainMovementEvents	trains_arrived_possible	success_rate_over_possible	0.726
1 rollout_stats	TrainNovementEvents	trains_cancelled	mean_rate_cancelled_trains	0.002
1 rollout_stats	TrainBlockEvents	count_deadlocks	mean_episode_trains_deadlock [0.210
1 rollout_stats	FlatlandDepartingEve.	.departure_asap	mean_ratio	0.844
1 rollout_stats	FlatlandDepartingEve.	departure_in_time	mean_ratio	0.154
1 rollout_stats	FlatlandDepartingEve.	departure_severe_delay	mean_ratio	0.000
A Looper and the second s				

Can be extended!!!

Learn more at https://maze-rl.readthedocs.io/en/latest/getting_started/maze_env/event_system.html

Maze-Flatland KPIs – Domain-Specific Events

Event Name	Range	Description
Departure Delay	[0, ∞]	Average delay recorded for departure
Departure in Time	[0, 100%]	Trains departing on time to arrive within the scheduled time window
Arrival Ratio	[0, 100%]	Trains arrived at destination
Arrival Delay	[0, ∞]	Average delay for trains arrived at destination
Unsolvable Ratio	[0, 100%]	Trains without a valid path from departure to destination
Cancelled Trains	[0, 100%]	Trains that never departed
Deadlock Ratio	[0, 100%]	Trains on the rails unable to move due to blocked paths

Maze-Flatland Training – Offline RL

Maze-Flatland Validation and Testing

Simple rollout

- Focus on challenging episodes
- Customisable environment configuration

Competition validation

• Play fixed competition-like scenarios for round 1 and 2

For more information visit: <u>https://flatland.aicrowd.com/challenges/neurips2020/envconfig.html</u>

2. \rightarrow Environment engineering

- Improved environment engineering to enhance AI-based agent development;
- Designed multiple reward formulations **improving feedback frequency**, leading to more efficient training
- **3.** \rightarrow Transparent decision making with gradient-boosting-based model
- Integrates **XGBoost** without limiting agent capabilities. Full functionalities remain available.
- Lays the foundation for human trust through transparency, making decision-making interpretable.
- Maintains comparable performance when compared to deep dense networks for decision-making, while significantly cutting training time and guaranteeing transparency.

While the first phase involved interconnected development, the maze-flatland repo is a foundation for ongoing development and future advancements in both tasks.

Maze-Flatland Training – Replicate the results

Maze-Flatland Training – Replicate the results

1) Pre-step

Install maze-flatland

conda env create --file
environment.yml conda activate mazeflatland
pip install -e .
pip install git+https://github.com/enlite-ai/maze.git@dev
Download the dataset

Download and extract https://drive.google.com/file/d/1FW6FnAKHgXXu_LDbdeWQR32jtTQeFc5o

3) Validation

Neural Network - run the following command

maze-run
+experiment=multi_train/rollout/validation_torch_policy
input_dir=<path/to/policy>
XGBoost - run the following command

maze-run
+experiment=multi_train/rollout/validation_xgboost
input_dir=<path/to/policy>

2) Imitation Learning

Neural Network - run the following command

maze-run -cn conf_train
+experiment=offline/train/bc_train
trajectories_data=</path/to/dataset>
XGBoost - run the following command

maze-run -cn conf_train
+experiment=offline/train/xgboost_train
trajectories_data=</path/to/dataset/>

4) Compare

Analyse the validation_stats.csv files in the output directories

Repository link: https://gitlab.inesctec.pt/cpes/european-projects/ai4realnet/enliteai/beta_release/maze-flatland

Performance Comparison – NN vs XGBoost

Env	setup	for eacl	hΙ	evel

	#agents	Map size	n_cities	Max Rail pairs in city	Max rails between cities	Malfunction rate	Malfunction interval
Test_0	7	30x30	2	2	2	1/540	[20, 50]
Test_1	10	30x30	2	2	2	1/900	[20, 50]
Test_2	20	30x30	3	2	2	1/1800	[20, 50]
Test_3	50	30x35	3	2	2	1/4500	[20, 50]
Test_4	80	35x30	5	2	2	1/7200	[20, 50]

- Improved environment engineering to enhance AI-based agent development;
- Provide built-in high-level customisation: reward, observation and action;
- Integrated XGBoost for interpretable decision making

	Multi-agent support	Hide illegal actions	Improved sample efficiency	Support custom observation	Support custom actions	KPIs & event support	Support custom reward formulations
maze-flatland	~	~	~	v	V	V	v
flatland-rl	X	Х	Х	~	Х	Х	Х

https://github.com/AI4REALNET/maze-flatland

AI4REALNET has received funding from <u>European Union's</u> Horizon Europe Research and Innovation programme under the Grant Agreement No 101119527 and from the Swiss State Secretariat for Education, Research and Innovation

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

