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Abstract—The European Union’s Artificial Intelligence (AI)
Act defines robustness, resilience, and security requirements for
high-risk sectors but lacks detailed methodologies for assessment.
This paper introduces a novel framework for quantitatively
evaluating the robustness and resilience of reinforcement learning
agents in congestion management. Using the AI-friendly digital
environment Grid2Op, perturbation agents simulate natural and
adversarial disruptions by perturbing the input of AI systems
without altering the actual state of the environment, enabling
the assessment of AI performance under various scenarios.
Robustness is measured through stability and reward impact
metrics, while resilience quantifies recovery from performance
degradation. The results demonstrate the framework’s effective-
ness in identifying vulnerabilities and improving AI robustness
and resilience for critical applications.

Index Terms—Artificial intelligence, reinforcement learning,
power systems, robustness, resilience

I. INTRODUCTION

The real-time operation of power grids requires efficient
power flow management, especially in contingency scenarios.
The integration of renewable energy sources (RES), extreme
weather, and cyber-attacks intensifies congestion management
challenges and increases operators’ cognitive load. Artificial
Intelligence (AI), particularly reinforcement learning (RL)
agents, shows great promise for supporting operators in real-
time decision-making [1]. Traditionally reliant on experience
and human intuition, congestion management now demands
AI-human teaming. AI assistants can recommend real-time ac-
tions to operators, avoiding the need for full automation while
addressing the growing complexity of power grid operations.

The European Union’s AI Act emphasizes accuracy, ro-
bustness, and cybersecurity throughout AI lifecycles. Article
15 demands “measures to prevent, detect, respond to, resolve
and control for attacks trying to manipulate the training
data set, or pre-trained components used in training, inputs
designed to cause the AI model to make a mistake, confi-
dentiality attacks, or model flaws”. Robustness and resilience
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are crucial concepts in this discussion. Robustness refers to
a system’s ability to maintain performance under natural or
adversarial perturbations, either locally (sample-specific) or
globally (deterministic guarantees) [2]. Resilience, by contrast,
is the ability of an AI system to prepare for, adapt to, and
recover rapidly from perturbations or unexpected changes [3],
emphasizing recovery. Notably, resilience is often used in
power systems in a different but analogous context, where
AI systems are replaced by power systems. The AI Act
highlights robustness but lacks methodologies to quantify it
or address resilience. Organizations like ISO, IEC, and IEEE
are developing standards to fill this gap. ISO/IEC 24029-2
assesses robustness in AI systems, defining properties like
stability and sensitivity [2]. However, it primarily applies to
classical AI applications (e.g., classification, regression) [4]
and lacks performance metrics for these properties.

In the academic literature, the technical robustness of AI-
based systems has mainly been focused on computer vision
problems with ANN of different architectures and types.
One example is abstract interpretation, which approximates a
potentially infinite set of behaviors with a finite representation
for feedforward and convolutional neural network layers [5].
According to a recent literature review by Ilahi et al., [6],
the number of publications and methodologies that study the
impact of adversarial attacks in deep learning algorithms that
do not use images as inputs is low [6]. One of the few works
on RL is [7], which studies how different exploration methods
can enhance the robustness and resilience of deep RL against
both training-time and test-time attacks.

Given the power system’s high-risk nature, methodologies
have been proposed to evaluate the robustness of AI-based
decision systems. Dobbe et al. studied safety risks in use
cases like frequency regulation and distributed energy resource
control, focusing on robustness to policy shifts and adherence
to constraints [8]. Formal verification methods for black-box
models like artificial neural networks (ANNs) were introduced
to understand boundaries and identify adversarial examples
in power system security tasks [9]. Zheng et al. proposed a
gradient-based approach to generate adversarial perturbations
for network topology optimization, identifying critical mo-
ments for these attacks [10]. Chen et al. developed adversarial
agents to distort RL outputs and steer system trajectories in
voltage regulation and congestion management tasks [11].
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Mechanisms to improve AI robustness include adversarial
training and data protection. Tian et al. proposed protecting
high-impact meters (e.g., encryption) and adversarial training
for ANN-based state estimation [12], while adversarial training
was applied to power quality recognition with convolutional
neural networks [13]. However, all these works lack a formal
definition for robustness and resilience, in particular, perfor-
mance metrics to assess the different properties of these over-
arching concepts in an RL setting. To address this gap in the
literature, the present paper proposes a novel methodology for
quantitatively assessing the robustness and resilience of RL-
based agents designed for real-time congestion management
in electrical grids. The focus is testing time (i.e., focused on
conformity assessment of pre-trained AI models as defined in
the AI Act), but the metrics are also applicable during the
training time of the AI models.

This paper is structured as follows: Section II outlines
the congestion management use case. Section III introduces
perturbation agents and metrics for assessing robustness and
resilience. A case study in an AI-friendly digital environment
is presented in Section IV. Conclusions are in Section V.

II. CONGESTION MANAGEMENT USE CASE

To evaluate the robustness and resilience of AI systems,
this work focuses on the congestion management use case
– a high-risk task where human operators are supported by
an AI assistant system to manage power flows and mitigate
network congestion [1]. Specifically: a) a human dispatcher
monitors the situation of the network at a 5-min resolution
and identifies the need for remedial actions (e.g., topological
changes, generation re-dispatch), ideally with anticipation over
a few hours-ahead horizon; the AI-based information process-
ing functions act as a triggering mechanism for intervention or
categorizes situations for human solving; b) for a chosen task,
the human dispatcher receives a recommendation for remedial
action from the AI model, with information on predicted
effect and confidence; c) the human dispatcher accepts the
recommendation, requests new information or explanations,
or looks for a different action guided by an exploration agent
or via manual simulation with power flow calculation tools.

While AI assistants are powerful tools for grid operations,
addressing associated risks is crucial. For RL, adversarial
attacks target the state space, reward function, action space,
and model space. In congestion management, focus is placed
on state space perturbations due to: a) reward functions and
AI models being secured in cyber-safe IT systems, enabling
swift restoration or retraining in secure environments; b) action
space operations being linked to OT systems with high cyber-
security standards and limited attacker knowledge of network
topology reduces attack efficacy. However, data-driven models
remain vulnerable to imperceptible input perturbations [14],
while missing or erroneous data is common in real-world
networks. On the other hand, data-driven models are often
vulnerable to small imperceptible perturbations to the input
data [14]. Furthermore, missing or erroneous data can be
common in real-world grids.

Algorithm 1: Random perturbation agent rules
Data: p, PP, sgen, sload, sflow, σgen, σload, σflow

1 Apply perturbations in PP to sgen, sload and sflow;
2 u← Uniform(0, 1);
3 if u < p then
4 Randomly choose value to perturb smi where

m ∈ {gen, load, flow} and i ∈ {1, . . . , |sm|};
5 u← Unif(0, 1);
6 if u < 0.2 then
7 smi ← 0;
8 else
9 r ← logNormal(0, σm);

10 smi ← smi × r;
11 k ← Geometric( 1

6
);

12 Add new perturbation to PP for k steps;
13 Update remaining steps for perturbations in PP ;

III. ASSESSMENT METHODOLOGY

A. Perturbation Agents

As discussed in Section II, this work considers a pertur-
bation agent that generates adversarial examples in the input
space of the AI system. While the agent cannot directly modify
the actual state of the network (environment), it can intercept
the input of the AI system and alter data measurements
in this input, thereby influencing the system’s outputs and
decision-making. Although such a perturbation agent can be
employed during the AI agent’s training phase, this study
uses it to evaluate a pre-trained AI agent in an operational
context. The environment used in this work is an AI-friendly
digital simulation (see Section IV for more details) that fully
replicates electrical grid operations and is also employed for
training RL-based agents.

Three types of perturbation agents are considered: one simu-
lating natural adversarial perturbations and the other two repre-
senting intentional manipulations (e.g., cyber-attacks) designed
to remain undetectable by human experts. The first of these
intentional agents uses gradient estimation to create adversarial
examples in every step of the simulated environment, and the
second uses RL to find the best timing and type for each attack.

1) Random perturbation agent (RPA): Introduces random
perturbations to simulate potential failures in the Supervisory
Control And Data Acquisition (SCADA) or state estimation
system. It replicates natural adversarial disruptions to the
system, such as missing measurements. At each step in the
environment – corresponding to each instance when the human
operator monitors the system – the AI agent can inject a new
perturbation, as illustrated in Algorithm 1.

As an input the RPA needs the probability of introducing
a new perturbation p, the set of previous perturbations that
should still be applied PP , the actual data on generation
(sgen), load (sload) and flow over power lines (sflow) and
the standard deviation of the introduced perturbation for each
data group σgen, σload and σflow.

In lines 2-3 of Algorithm 1, a new perturbation is intro-
duced with probability p. One specific value is chosen to be
perturbed, either mimicking a complete failure to measure a



Algorithm 2: Gradient estimation perturbation agent
Data: s,W, ζ, ξ

1 sadv ← s;
2 for w = i, . . . ,W do
3 Compute gradients g(sadv);
4 sadv ← sadv(1 + ζsign(g));
5 Clip sadv to keep it between s(1− ξ) and s(1 + ξ);
6 end

value (line 7) or an incorrect measurement (lines 9-10). For the
latter case, the lognormal distribution is chosen to ensure that
the sign of the value remains the same and because we assume
that the measurement errors approximately follow a normal
distribution. This perturbation is then applied in the next k
steps by adding it to PP , with an average length of 6 steps,
equivalent to 30 minutes. The geometric distribution is chosen
for k due to the memoryless property of the distribution.

2) Gradient estimation perturbation agent (GEPA): The
GEPA creates an adversarial example to minimize the output
of the optimal action in the policy of the AI agent during
every step. The adversarial examples are created using the
combination of gradient estimation and the projected gradient
descent used in [11]. This estimation is necessary because
this work focuses on “black-box” attacks. It is performed
using Eq. 1, where L(s) represents the target function that
the attacker aims to manipulate. Specifically, L(s) is defined
as the value corresponding to the optimal action in the AI
agent’s policy, and the objective is to minimize this value,
making the action less desirable. The vector ei in Eq. 1 has 1
in the ith position and 0 everywhere else.

gi(s) =
∂L(s)
∂si

≈L(s + 0.01ei)− L(s − 0.01ei)
0.02

(1)

These estimated gradients can be computed for each value
of an observed state and are used in the projected gradient
descent algorithm – see Algorithm 2.

In Algorithm 2, s is the vector representation of the state
that needs to be perturbed, and sadv is the adversarial example.
Additionally, W is the number of iterations in the projected
gradient descent, ζ is the step size in each iteration, and ξ is
the maximum perturbation, which is set to 10%. This value
was also used by Zheng et al. [10], who stated that the AC
state estimation is unable to detect perturbations up to this
threshold.

3) RL-based perturbation agent (RLPA): It actively aims to
change the behavior of the AI agent with as little perturbation
as possible. This agent builds upon the work of Garcia et
al. [15], who used multi-objective RL to train an agent
capable of maximizing the reduction in long-term rewards
while minimizing the magnitude of perturbations. However,
here the upper bound of 10% is used again, which simplifies
the algorithm into a single-objective RL. Algorithm 3 shows
the simplified algorithm used to train the perturbation agent.

In Algorithm 3, H is the number of episodes, and K is the
maximum number of steps in each episode. The set P contains
all possible actions the perturbation agent can take, which

Algorithm 3: RL-based perturbation agent
Data: H,K,P, α, ϵ

1 Initialize Q(s, a) arbitrarily;
2 for h = i, . . . , H do
3 Initialize state s;
4 while k < K and stopping criterion not met do
5 u← Uniform(0, 1);
6 if u < ϵ then
7 Pick perturbation p randomly from P ;
8 else
9 p← argmaxp′∈PQ(s, p′);

10 Apply perturbation p to get sadv;
11 Let AI agent choose action aadv based on sadv;
12 Take action aadv and go to next state s′ with reward

R;
13 p′ ← argmaxp̂∈PQ(s′, â);
14 Q(s, p)← Q(s, p) + α(R+ γQ(s′, p′)−Q(s, p));
15 s← s′

16 end
17 end

in this case are the possible perturbations, and α and ϵ are
the learning and exploration rates. The regular and perturbed
states, s and sadv , are again used, and aadv is the action taken
by the AI agent based on sadv . In each step, the perturbation
agent either performs a random perturbation or the best one
according to the Q-values (lines 5-9), which are commonly
used in RL frameworks and, in this work, represent how much
the action is expected to lower the performance of the AI
agent. Based on this perturbation, the environment will then
go to the next state, s′, with an immediate reward of R. To
estimate the long-term value of p, the best perturbation that
can be performed in s′ is chosen in line 11. Afterward, in
line 12, the Q-value for the original state and the performed
perturbation, Q(s, a), is updated using R and the Q-value of
the best case perturbation in s′.

The perturbation agent can do nothing or perform a pertur-
bation, which can change one or more of the values in the
observed state and replace them with zero or a very large
number. The agent can also create an adversarial example to
make the AI agent take a specific action. The gradients are
again estimated using Eq. 1. However, due to the running
time, the Fast Gradient Sign Method [16] is used here instead
of the projected gradient descent. Additionally, the adversarial
example will no longer be created at every step, but only if the
RLPA thinks it will result in the biggest performance drop for
the AI agent. Since these adversarial examples should make
the AI agent perform a certain action, L(s) is defined as the
value corresponding to that action in the policy of the AI agent,
and it should be maximized. Using the estimated gradients, the
adversarial example can be computed using Eq. 2 as long as
the maximum amount of perturbation ξ is known, again set to
10%.

sadv = s + ηsign(g) (2)

Since including all possible combinations in P would result
in an exponentially growing number of possible perturbations,



a greedy action space reduction heuristic based on the Teacher
in the curriculum agent [17] is applied to select the most
promising combinations of up to three values in an obser-
vation. The number of possible targets for the adversarial
examples is also reduced by grouping similar actions together
and only including one action per group as a target.

B. Robustness Metrics
The technical robustness is evaluated using a perturbation

agent (see Section III-A) and using different metrics intro-
duced in this section.

The first metric measures the difference in total rewards
between the unperturbed and perturbed AI systems. This
metric measures if the AI system can perform at the same
level when introducing perturbations and can be calculated
using the formula from Eq. 3. Ru

k is the reward obtained in
step k by the AI agent when no perturbations are performed
on the input, and Rp

k is the reward with perturbations.
K∑

k=0

Ru
k −

K∑
k=0

Rp
k (3)

Another factor that can be used to determine the robustness
of an AI system is the range of change in the output under
perturbations. In this case, the output would be the action
recommended by the AI agent, and the range of change is
measured using two approaches.

The first approach is to assess whether a particular decision
holds for input variation (e.g., noise, missing data) in the same
context by counting the number of times the decision the AI
system takes with perturbations is different compared to the
one made unperturbed, as shown in Eq. 4 using the indicator
function 1cond, which is equal to 1 if the condition cond, e.g.
x > 0 or x ∈ A, is true and 0 otherwise. The Eq. also uses
aadvk and ak, corresponding to the action taken in step k with
and without the adversarial agent, respectively.

K∑
k=0

1aadv
k ̸=ak

(4)

The second approach to measure the range of change in the
output is to look at how similar or different the new action
with perturbation is to the original one. To do this, a similarity
score is assigned to each pair of actions, a1 and a2. This score
consists of two parts, one that corresponds to the same changes
(Eq. 5) and one that accounts for the changes to the same
substation in the network (Eq. 6). In Eq. 5, the set ca consists
of the changes that are made by action a, such as setting the
origin of power line 1 at bus bar 1, and ca

1,a2

= ca
1 ∩ ca

2

is
the set of changes that are made in both actions a1 and a2.
Additionally, ĉa

1,a2

is the set of changes that are almost the
same, e.g., an action setting the extremity of line 4 at bus 2
and an action setting it at bus 1. In Eq. 6, va is the set of
all substations affected by action a, and va

1,a2

is the set of
substation affected by both a1 and a2.

Ca1,a2

=
1

2

(
|ca

1,a2

|+ |ĉa1,a2 |
2

)(
1

|ca1 |
+

1

|ca2 |

)
(5)

V a1,a2

=
1

2

(
|va1,a2 |
|va1 |

+
|va1,a2 |
|va2 |

)
(6)

V a1,a2

+ Ca1,a2

2
(7)

The metrics defined in Eq. 4–7 allow the verification of
the stability property, as specified in ISO/IEC 24029-2 [2].
This property evaluates whether the system’s output remains
consistent despite variations in the input and whether its
performance is maintained under such conditions. In this case,
stability is assessed by comparing the output of a pre-trained
AI agent under perturbation to its expected output in the
absence of any perturbation.

Another metric is the number of steps in the environment
before a grid failure occurs. Using the set of all legal states S
and the indicator function, it is computed with Eq. 8.

K∑
k=0

1sk∈S (8)

This metric corresponds to the reachability property out-
lined in ISO/IEC 24029-2 [2], as it assesses whether the
AI agent can effectively prevent a grid failure state (e.g., a
cascading event resulting in a blackout) when subjected to
perturbations.

Even if the perturbations fail to reduce the obtained reward
or trigger a grid failure, they may still lead the AI system to
take unnecessary actions, often incurring additional costs. To
address this, another important metric is the reward per action.
This metric is formulated as Eq. 9, the decision for an agent
to do nothing is denoted by a∅; this means that 1ak ̸=a∅ = 1 if
the AI agent takes any action in step k and 0 if the agent does
nothing. ∑K

k=0 Rk∑K
k=0 1ak ̸=a∅

(9)

Additionally, analyzing data points that serve as weak
spots in the system – those capable of significantly altering
the system’s output with minimal changes – offers valuable
insights. This is measured by calculating the proportion of
instances where perturbing each input value results in a
change in the action taken by the AI agent. However, since
a perturbation is applied to every value in every step for the
GEPA, a threshold is defined to determine whether a value is
significantly perturbed. This threshold is computed using the
mean, µi, and standard deviation, σi, of all changes to the
given value as µi±σi. Based on this threshold, we can define
1si is perturbed as the indicator function indicating whether the ith

observation value is significantly perturbed or not. The metric
can then be computed using Eq. 10.∑K

k=0 1aadv
k ̸=ak

1sik is perturbed∑K
k=0 1sik is perturbed

,∀si ∈ s (10)



C. Resilience Metrics

The quantification of resilience is strongly related to the
magnitude and duration of reward function performance degra-
dation compared to an unperturbed system in the same context.

The first metric is the area between the reward curves of
the unperturbed and perturbed AI system from the episode
where the perturbations are introduced, hp. This metric can
be approximated using the trapezoidal rule for numerical
integration as in Eq. 11, with ∆Rhk = Rp

hk −Ru
hk.

K∑
k=1

∫ H

hp

∆Rhkdh ≈
K∑

k=1

∆RHk +∆Rhpk

2
+

H−1∑
i=hp+1

∆Rik (11)

The next metrics measure how quickly the AI system can
adapt to the introduction of perturbations by counting how
many episodes the degradation and restorative stages consist
of. An example is depicted in Fig 1.

Fig. 1. Degradation and restorative state during the testing of the AI system

These metrics can be computed by first defining the episode
with the lowest reward after perturbations, hmin, and the
episode with the highest reward after hmin, hmax:

hmin = argminhp≤h≤H{
K∑

k=1

Rhk} (12)

hmax = argmaxhmin≤h≤H{
K∑

k=1

Rhk} (13)

Using these values, the degradation and restorative time can
be calculated as hmin − hp and hmax − hmin, respectively.

Besides these metrics, it is valuable to examine the extent of
performance deterioration and assess whether the system can
recover to its original performance level without perturbations.
To do this, the minimum reward in the degradation state and
maximum reward in the restorative state can be computed with
Eq. 14.

minhp≤h≤H{
K∑

k=1

Rhk} (14)

maxhmin≤h≤H{
K∑

k=1

Rhk} (15)

Finally, the similarity between the state of the grid with
unperturbed and perturbed AI systems over time is used as
a metric. It measures how drastically the actual state of the
grid is affected after an action of the AI system is changed

by perturbations and whether the AI system is able to revert
these changes. In this work, the cosine similarity between the
vector representations of the states, as seen in the equation
below, is used as the metric, but other distance metrics could
also be used (e.g., Euclidean).∑|s|

i=0 s
adv
i si√∑|s|

i=0(s
adv
i )2

√∑|s|
i=0(si)

2

(16)

Calculating this similarity at each step enables the identifi-
cation of both degradation and recovery states in relation to the
unperturbed state, similar to the approach used for the reward.

IV. NUMERICAL RESULTS

A. Case-study

The analysis is conducted on the IEEE-14 bus system, which
is a simple approximation of a power network and is available
in the existing open-source AI-friendly digital environment
called Grid2Op [18], developed for the Learning to Run a
Power Network (L2RPN) competition series [1]. Grid2Op
helps users develop both expert systems and RL-based topol-
ogy controllers for power grid operation and control. It can be
used to enable the development of an AI assistant in control
centers for topology reconfigurations and re-dispatching, but
in this work, it is used to evaluate resilience and robustness
at test-time. The curriculum agent described in [17], and
available as a baseline model in Grid2Op, is used as the AI
agent to be analyzed in terms of robustness and resilience.
The training of the RLPA is done using a Deep Q Networks
training framework [19] built using PyTorch.

B. Analysis

To obtain the results, the average was taken over 35 episodes
run in Grid2Op, each with a maximum number of 8064 steps.

1) Robustness: In Fig. 2, the AI system’s performance
change on several robustness metrics is shown when including
a perturbation agent. The values for each metric are scaled as a
percentage of the performance of the system in an unperturbed
environment, which is why the unperturbed values are all
100%. For instance, the AI system’s survival time with the
RPA at p = 20% is approximately 95%, meaning that in
an environment where the system can operate for 1000 steps
without perturbations, it would experience a complete grid
failure after 950 steps when the perturbation agent is active.

From Fig. 2, it is evident that the AI system performs
well under both the RPA and GEPA, as the total reward and
number of steps remain above 90% in most cases, except
for the RPA at p = 100%. However, for the RPA, the
reward per action is significantly lower, indicating that the AI
agent takes more actions to achieve the same reward level.
In contrast, the reward per action for the GEPA exceeds
120%, further demonstrating the AI agent’s resilience to its
perturbations. Conversely, the agent’s performance under the
RLPA is notably poor, with all three metrics below 30%.

Table I presents the robustness metrics that cannot be
directly compared to the unperturbed performance. As Fig. 2



Fig. 2. Robustness metrics as a percentage of the unperturbed performance
of the AI system

demonstrated significant variations in the number of steps per
episode across different perturbation agents, the values have
been normalized for consistency.

TABLE I
ROBUSTNESS METRICS THAT CAN NOT BE COMPARED TO THE

UNPERTURBED SITUATION

RPA
20% 40% 60% 80% 100% GEPA RLPA

Actions changed 6.092 14.819 19.283 26.636 33.745 1.665 53.414per 1000 steps
Similarity score 0.005 0.005 0.005 0.004 0.004 0.240 0.025per changed action

It demonstrates that a higher probability of introducing
perturbations increases the number of altered actions, while
the alternatives chosen by the AI system in response to these
changes become less similar to the optimal action. The GEPA
cannot change as many actions and the alternative is quite
similar. However, the RLPA is again able to drastically affect
the performance of the AI agent, as it causes the most action
changes, and while the similarity score is higher than for the
RPA, it is still a lot lower than for the GEPA.

Fig. 3 depicts the power grid areas vulnerable to pertur-
bations using Eq. 10 for the GEPA. A traffic light color
scheme indicates vulnerability: green for less likely, red for
more likely, and yellow in between. Observations include
generation, load, and power line flow values. It shows that
power lines and the load at substation 9 are vulnerable to
perturbations, suggesting potential volatility.

2) Resilience: Fig. 4 depicts the reward obtained in each
step during several steps of an episode in the testing phase for
the environment with the GEPA.

This figure is included to illustrate the ability of the AI
agent to recover after a drop-off in performance caused by
perturbations. Between steps 2800 and 3100, a relatively large
difference can be seen between the unperturbed and perturbed
reward, making it easier to see the degradation and restorative
state of the AI agent. From Fig. 4, it can be observed
that hmin ≈ 2990 and hmax ≈ 3100, indicating that the
degradation state lasts for approximately 190 steps, while the
restorative state persists for around 110 steps. It can also be
seen that there can be multiple degradation states in a single
episode as another degradation and restoration can be seen
between steps 2500 and 2800. For this reason, the average

Fig. 3. Visualization of values in the grid that are vulnerable to perturbation

Fig. 4. Example of the reward obtained in each step between step 2450 and
3200 of an episode in an environment with the GEPA

number of degradations in an episode is also reported. Table II
presents the average performance of the AI agent on these
metrics in environments with different perturbation agents.

TABLE II
RESILIENCE METRICS FOR THE REWARD OBTAINED DURING AN EPISODE

IN THE TESTING PHASE

RPA
20% 40% 60% 80% 100% GEPA RLPA

Degr. time 478.81 435.50 452.90 480.26 430.86 476.07 424.22
Rest. time 527.12 480.62 411.23 392.96 404.83 467.15 517.52
max(∆R) 9.50 10.76 9.95 10.93 10.64 8.13 8.75
min(∆R) -8.53 -7.20 -8.27 -8.19 -8.23 -8.54 -6.47
# degr. per 0.64 0.80 0.88 0.84 0.84 0.62 0.381000 steps

Area per 47.44 145.91 55.08 111.44 77.96 9.75 109.341000 steps

The results indicate that the GEPA leads to longer degra-
dation and restorative periods than the RPAs. However, the
minimum reward achieved is not as low, and the maximum
reward is higher. This suggests that the AI agent is relatively
effective at withstanding and recovering from the perturbations
introduced by the GEPA. The maximum reward is negative
because the perturbed reward is higher than the unperturbed
reward in some steps, as the AI agent tries to recover part
of the lost reward. It can also be seen that the number of
degradations per episode is lower, which might be caused by
the fact that each degradation takes longer. The area between
the unperturbed and perturbed reward curve is on the lower
end.

Fig. 5 depicts the cosine similarity, as defined in Eq. 16, at



each step of an episode for both the unperturbed environment
and the environment with the RLPA for a subset of the steps.
It can be seen that the AI agent can recover the state to the
unperturbed state perfectly in about 20 steps after the first
drop-off around step 380, even though the drop-off is quite big.
Although the second degradation after 510 steps is smaller, the
agent seems to struggle a bit more with it, but after 200 steps,
it is able to recover to a score very close to 1.

Fig. 5. Example of cosine similarity to unperturbed state in each step between
steps 350 and 750 of an episode in the environment with the RLPA

The averages per episode for the metrics on the cosine
similarity can be seen in Table III. For the state similarity
to the unperturbed state, the GEPA still results in quite long
restorative times, although the degradation time is not as long
in this case. The lowest point after perturbation is again quite
reasonable, and since the maximum reward is close to zero,
the agent is also able to recover well.

TABLE III
RESILIENCE METRICS FOR THE SIMILARITY OF THE STATE TO THE

UNPERTURBED STATE

RPA
20% 40% 60% 80% 100% GEPA RLPA

Degr. time 256.73 257.11 201.98 196.66 190.20 261.34 169.02
Rest. time 331.32 339.43 321.02 287.94 304.46 451.92 1057.03
max(∆R) 3.31 3.27 3.38 3.62 3.78 3.21 3.75
min(∆R) 0.95 0.87 0.91 1.06 1.23 0.79 1.09
# degr. per 1.00 1.20 1.45 1.55 1.79 0.76 1.041000 steps

Area per 7.62 9.83 11.45 11.97 13.45 6.44 10.251000 steps

The metrics described in Sections III-B and III-C are
computed and show that RL-based algorithms can have a
significant variation in performance (i.e., reward function)
but are capable of recovering up to a point, provided the
congestion problem is solved.

V. CONCLUSIONS

This work bridges the gap between ongoing standard-
ization efforts and practical implementation in quantifying
robustness and resilience in mission-critical tasks, offering a
methodology and metrics to evaluate AI agents under natural
and adversarial perturbation scenarios quantitatively. A case
study in the Grid2Op environment showed that the proposed
approach effectively identifies vulnerabilities in AI decision-
making systems and varying susceptibility to perturbations.
RL-based perturbation agents reveal significant weaknesses

in AI performance compared to random or gradient-based
perturbations.

Future work consists of a) developing more intelligent ad-
versarial agents, e.g., based on an RL algorithm, that includes
features (e.g., where to attack, perturbation budget) in the
reward function, and b) developing a methodology to co-
identify thresholds (with the decision-maker) for the metrics
proposed in this paper and determine if a certain AI-based
system is certified for safe operation.
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