
ar
X

iv
:2

50
3.

15
19

0v
2 

 [
cs

.L
G

] 
 1

9 
Ju

n 
20

25

LEARNING TOPOLOGY ACTIONS FOR POWER GRID CONTROL: A
GRAPH-BASED SOFT-LABEL IMITATION LEARNING APPROACH

A PREPRINT

Mohamed Hassouna1,2,∗ Clara Holzhüter1,2 Malte Lehna1,2 Matthijs de Jong3 Jan Viebahn3

Bernhard Sick2 Christoph Scholz1,2

1 Fraunhofer Institute for Energy Economics and Energy System Technology (IEE)
Joseph-Beuys-Straße 8, Kassel, 34117, Germany

2 Intelligent Embedded Systems, University of Kassel
3 TenneT TSO B.V., Arnhem, The Netherlands

ABSTRACT

The rising proportion of renewable energy in the electricity mix introduces significant operational
challenges for power grid operators. Effective power grid management demands adaptive decision-
making strategies capable of handling dynamic conditions. With the increase in complexity, more
and more Deep Learning (DL) approaches have been proposed to find suitable grid topologies
for congestion management. In this work, we contribute to this research by introducing a novel
Imitation Learning (IL) approach that leverages soft labels derived from simulated topological action
outcomes, thereby capturing multiple viable actions per state. Unlike traditional IL methods that
rely on hard labels to enforce a single optimal action, our method constructs soft labels that capture
the effectiveness of actions that prove suitable in resolving grid congestion. To further enhance
decision-making, we integrate Graph Neural Networks (GNNs) to encode the structural properties of
power grids, ensuring that the topology-aware representations contribute to better agent performance.
Our approach significantly outperforms its hard-label counterparts as well as state-of-the-art Deep
Reinforcement Learning (DRL) baseline agents. Most notably, it achieves a 17% better performance
compared to the greedy expert agent from which the imitation targets were derived.

Keywords Power Grids ⋅ Graph Neural Networks ⋅ Topology Control ⋅ Learning to Run a Power
Network

1 Introduction

In recent years, Reinforcement Learning (RL) and Imitation Learning (IL) have emerged as powerful approaches
for sequential decision-making in complex environments, including power grid management. In this context, agents
must make rapid and informed topological adjustments to maintain grid stability under dynamic conditions. Recent
advances in power grid control have demonstrated the effectiveness of RL-based agents, particularly when they are
pre-trained using IL [5, 11]. Prior work has applied IL for topology control using standard feed-forward neural
networks with subsequent RL fine-tuning to improve decision-making policies [10, 11, 5]. Additionally, Graph Neural
Networks (GNNs) have become popular as a structured way to encode power grid topology, enabling improved action
representation and decision-making [6, 21, 28, 19, 29, 30].

However, the existing IL methods often fail to capture the inherent uncertainty in the solution space and typically learn
to mimic a single expert action per state, disregarding the fact that there are often multiple effective interventions that
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can ease congestion. This restrictive view can undermine policy robustness and adaptability, leading to rigid policies
that struggle with generalization.

Grid2Op [3] provides a widely used framework for developing and evaluating RL-based grid control methods, particu-
larly for topology optimization tasks such as substation reconfigurations [14]. In addition, RL agents have demonstrated
strong performance in Learning to Run a Power Network (L2RPN) challenges [15, 17, 16, 20], where the goal is
to maintain grid operability under uncertainty and disturbances. In our experiments, we leverage the WCCI 2022
environment implemented in Grid2Op2, thus allowing the benchmarking of our methods.

1.1 Main Contributions

To address the limitations of current approaches and enable more robust and adaptable policy learning for power grid
control, we propose a soft-label imitation learning approach. Soft-label IL retains and exploits information about
multiple effective actions for each grid state through a richer supervisory signal. This rich supervision guides the policy
toward greater robustness and adaptability, reflecting the operational reality that power grid congestion can be resolved
in more than one single way. Our approach thereby avoids overfitting to potentially sub-optimal expert decisions,
reduces label noise, and guides the agent in learning a generalized policies that also are applicable for previously
unseen grid states. Furthermore, soft labels enable us to naturally produce a ranking of candidate actions, which is
especially valuable in power grid control, where the choice of multiple viable interventions can account for operational
preferences, N-1 contingencies, or robustness criteria. This combination – retaining multiple desirable options alongside
their respective confidence scores – ultimately results in a more reliable, adaptable, and realistic control policy.

Additionally, we leverage GNNs to account for the structural properties of power grids, reflecting their physical
topology and power flow relationships. GNNs enable the policy to learn contextually rich representations for each grid
component, which further improves decision-making. Our contributions can be summarized as follows:

1. Development of a novel soft-label approach for IL in power grid control, incorporating multiple viable actions
into the learning signal.

2. The integration of GNNs to effectively leverage the inherent graph structure of power grids and enhance
decision-making.

3. A demonstration that our method outperforms two state-of-the-art RL approaches and particularly the greedy
expert itself by utilizing soft action labels.

2 Related Work

The idea of congestion management through topology optimization has witnessed a surge in research interest, in part due
to the L2RPN challenges by the french Transmission System Operator (TSO) RTE [15, 17]. In many cases the proposed
solutions consist of a model-free Deep Reinforcement Learning (DRL) algorithm that is restricted by rule-based or
heuristic components [5, 10, 11, 1, 31]. Most of these DRL approaches are built with standard Feed-forward Neural
Network (FNN), however, [6] find in their survey that an increasing number of researchers use GNNs to incorporate
the graphical nature of the power grid. As the number of topology actions increases drastically with grid size, there
have further been different approaches to tackle the large action spaces. Some researchers propose a hierarchical
agent strategy [13, 29], or multi-agent approaches [19, 18] to split the decision making process in smaller sub-tasks.
Alternatively, [4] propose a Monte Carlo Tree Search (MCTS) to plan multiple steps ahead.

Moreover, IL has been explored for power grid control, motivated by the potential to accelerate computation through
the imitation of rule-based and other expert agents. While there have been some application of IL by [5, 11] and [10] to
pre-train a feed-forward network on a greedy agent, they only used the models to jumpstart the DRL training process
but didn’t utilize the IL model as an agent for topolgy control directly. A further IL approach in this regard has been
studied by [7] and [8]. In the first paper, [7] analyze both a greedy and a N-1 rule-based agent on the Grid2Op IEEE
14 environment and then use the experience of the agents to train a IL model. Several types of hybrid agents were
constructed, which combined IL and simulation functionality. The hybrid agents showed similar performance with
almost 100% completion of the scenarios, while reducing the inference duration of the agent. Even more interesting,
[7] found that there occurs in some cases a confusion of the actions by the IL model, as some actions are not clearly
distinguishable in some scenarios. In the second paper, [8] follow up on their IL framework and focus on applying (node-
level) GNN prediction of the grid topology. They identify the busbar information asymmetry problem, where nodes
on the same substation but different busbars remain unconnected in traditional graph representations, hindering GNN
performance. They propose a heterogeneous GNN to address this by modeling inter-busbar connections, outperforming

2Grid2Op: https://grid2op.readthedocs.io/en/latest/ (last accessed 12/03/2025).
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homogeneous GNNs and FNNs in accuracy and out-of-distribution generalization. Existing IL methods inherit expert
biases by relying on deterministic policies that overlook diverse viable actions for overload mitigation, we highlight the
need to capture all effective actions instead and address it through a richer representation of the labels.

3 Power Grid Setup

As mentioned earlier, we follow the previous researchers and use the Grid2Op environment, as it is the current
benchmark for transmission grids [6] and allows the comparison with other approaches. Grid2Op is an open-source
simulation platform designed for power grid operation research, particularly in the context of DRL and other Deep
Learning (DL) control strategies. Since Grid2op was designed with RL in mind, we utilize the same terminology,
though we do not apply RL in this work.

3.1 Environment

In this work, we utilize the L2RPN WCCI 2022 environment, which models the IEEE 118-bus transmission system
with an expected 2050 electricity mix. As a result, the simulated fossil fuel generation accounts for less than 3%, and
renewable energy sources are significantly increased [20]. At its core, the power grid can be represented as a graph
where substations are nodes that are connected via transmission lines. Substations serve as connection points for grid
components, including generators, loads, and power lines. This can be seen in Fig. 1, where we visualize the WCCI
2022 environment. This specific IEEE 118 transmission grid consists of 118 substations, 91 loads, 62 generators, and
7 battery storage units, all interconnected by 186 transmission lines. The observation space S of the contains 4,295
features such as active and reactive power flows, voltage magnitudes and angles, generator and storage injections,
load demands, planned maintenance schedules, cooldown periods, and topology configurations. Among these, the
most critical variable for this work is the line loading capacity, denoted as ρl for each line l ∈ L, with the maximum
capacity across all lines given by ρmax = maxl(ρl). Furthermore, a double busbar system is implemented. There,
each substation consists of two busbars, with each component connected to either one of the busbars. However, power
can only flow between elements connected to the same busbar within a substation. Thus, through the reassignment
of grid components to a different busbar, one can substantially alter the power flow. For this reason, the topology
optimization on a substation can provide a cost-effective and fast solution to tackle congestion issues in the transmission
grid. Another feature of Grid2Op is the simulation function, obs.simulate(), which is essential for assessing the
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Figure 1: Overview of the WCCI 2022 L2RPN environment, generated using Grid2Op’s native visualization tools.
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impact of proposed actions. It forecasts the grid’s next state based on realistic generation and consumption data and
computes the power flow.

Power flows can be simulated under the N-0 case, which assumes normal grid operation without any line outages. In
contrast, the N-1 case involves simulating the failure of a single transmission line and calculating the resulting power
flows, particularly focusing on the maximum line loadings to assess grid resilience. In the Grid2Op framework, a full
N-1 contingency analysis is not conducted exhaustively. Instead, a softened version is used where an adversarial agent
randomly disconnects one line from a predefined subset of lines deemed critical [14]. This simulates unexpected failures
while maintaining computational feasibility and allowing learning-based agents to develop robust control strategies.

Grid2Op simulates power grid operations in 5-minute intervals, modeling fluctuations in demand, generation adjust-
ments, and potential failures. Its goal is to maintain stability and prevent cascading failures due to line overloads
using synthetic scenarios (chronics) based on historical data. An episode in Grid2Op can end in two ways: successful
completion or early termination due to grid failure. A successful episode occurs when an agent manages the grid
throughout all 2016 time steps (equivalent to one week). In contrast, early termination – often resulting in a blackout –
happens when grid stability is compromised. A common cause is cascading failures triggered by the rule that disconnects
a transmission line if its load remains above 100% for three consecutive time steps. Additionally, an episode ends
immediately, in case a generator or load is disconnected, islanding occurs, or if the power flow solver fails to converge.

3.2 Action Space

The action space is divided into four different action types. The first action type includes line disconnection and
reconnection, while the second type includes substation reconfiguration, which we interchangeably refer to as topology
actions. The third action type includes generator redispatch as well as curtailment of renewable energies, while the
fourth type relates to battery storage operations. In this work however, we only consider topology actions as they are
the most cost-efficient action type. One simplified example substation reconfiguration action is shown in Fig. 2, which
switches the line end 5 from the first to the second busbar. This completely changes the connection between the two
substations, altering the power flow and mitigating the line overload. These discrete actions scale combinatorially
with the number of substation elements, creating a large action space. Grid2Op restricts certain actions to maintain
operational feasibility, ensuring that agents cannot take unrealistic or physically impossible steps. Nevertheless, the
large action space still presents a significant challenge for control algorithms, hence an action space reduction is usually
applied. Note that the line disconnection and reconnection also influences the busbar configuration, as non-connected
elements can not be switched by topology actions. The resulting implications are later discussed in Sec. 4.4.2, as they
influence the feasibility of topology actions. Nevertheless, all compared agents, including our own, do not explicitly
learn line disconnection and reconnection, but instead automatically reconnect lines whenever possible to restore grid
stability.

3:Gen

Bus 1

Bus 2

Substation 1

4:Load

1:Gen 2:Load

Bus 2

Substation 2
Bus 1

6:Line

7:Load

5:Line

Switch 5:line action on first substation

𝑡

3:Gen

Bus 1

Bus 2

Substation 1

4:Load

1:Gen 2:Load

Bus 2

Substation 2
Bus 1

6:Line

7:Load

5:Line

𝑡 + 1

Figure 2: Example of a substation reconfiguration action. Two substations are visualized, each with two busbars.
Generators, loads, and line ends are represented as nodes that are interconnected via a busbar of a substation. From
time step t to t + 1, one end of line 5 is switched to the other busbar, altering the connection between the elements and
mitigating the line overload.
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4 Methodology

We present a systematic approach to addressing grid overloads by combining simulation-based decision-making with
advanced learning techniques. We begin by detailing the Greedy Expert Agent (Greedy90%), a reactive agent that
selects the best corrective actions based solely on current grid conditions via load flow simulations. Then, we introduce
the generation of soft labels, a strategy that leverages the full spectrum of simulated outcomes to create a richer
supervisory signal. Additionally, we explain how the inherent graph structure of power grids is leveraged using GNNs
to capture spatial dependencies. Lastly, the agent’s architecture and practical enhancements, such as topology reversion
and improved action feasibility is discussed.

4.1 Greedy Expert

The Greedy90% performs an N-0 load flow simulation for all possible actions for one timestep and selects the one
that has the lowest maximum line loading. For this, we utilize Grid2Op’s env.simulate() method, which perform a
power flow calculation based on forecasts of generation and loads. Specifically, the Greedy90% is activated if any line
loading exceeds 90%. In that case it simulates all actions and selects the action that provides the lowest maximum line
loading ρmax. This agent requires a lot of costly power flow simulations and is highly reactive, making decisions based
solely on the current state of the grid without considering long-term implications or alternative strategies. Furthermore,
it only considers the maximum line loading value and thus other lines with higher load are not regarded. Consequently,
it is missing exploration and does not consider the holistic effect of actions.

4.2 Soft Labels

We begin the generation of soft labels by running the Greedy90% agent through our environment. The details of the
complete procedure for generating soft labels along with applying the greedy optimal action are described in Algorithm
1. However, instead of a simple greedy iteration through all actions and simulating the ρmax for each action (line 4&5),
we also compute an effectiveness score ea based on the inverse maximum line loading 1 − ρmax (line 5).3 With this
effectiveness score, we generate our soft labels that compare the impact of the action to all other actions. These soft
labels are created by applying a temperature softmax function to the effectiveness score ea (line 8). Note that we used a
temperature parameter τ = 0.01 via preliminary tests over several values to sharpen the softmax so that highly effective
actions get substantial probability mass without excessive skew; a full sensitivity analysis could further validate this
choice.

The remaining algorithm is then simply the greedy selection from the original Greedy90% (line 11). Ultimately, this

Algorithm 1 Soft Label Generation

Require: Environment env, Set of actions A, temperature parameter τ
1: Initialize dataset D ← ∅ and environment env
2: for each observation s ∈ S do ▷ Iterate through environment and receive s
3: for each action a ∈ A do ▷ Simulate maximum Line Loads
4: Run env.simulate(a) to get ρmax(s, a)
5: Compute effectiveness score: ea = 1 − ρmax(s, a)
6: end for
7: for each action a ∈ A do ▷ Compute soft labels
8: Ψ(a ∣ s) = exp(ea/τ)

∑a′∈A exp(ea′ /τ)
9: end for

10: Store (s,Ψ(a ∣ s)) in dataset D
11: Apply greedy optimal action a∗ = argmin

a′∈A
ρmax(s, a

′) using env.step(a∗)

12: end for
13: return D

approach enables the agent to learn from all the simulations of possible actions that are otherwise discarded. Soft labels
provide a relative measurement. A significantly higher value for a particular action indicates that this action is distinctly
more effective in reducing line load compared to its counterparts and therefore, the model should be more confident in
predicting this action. Conversely, if the effectiveness ratio is more evenly spread across several actions, it suggests

3Note that we do not collect an effectiveness score if a grid failure is imminent, i.e., no action is able to resolve the congestion in
the next step.
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that these actions have similar effects. Instead of rigidly following the best action, the agent is exposed to a richer
supervisory signal.

4.3 Utilizing the inherent graph structure of power grids

Power grids are inherently graph-structured systems, where substations, generators, loads, and transmission lines form
interconnected nodes and edges. To leverage this structure, we transform the observations into a graph representation.
This graph-based encoding allows GNNs to capture spatial dependencies and propagate congestion-reduction strategies
across the grid.

4.3.1 Graph Construction

We treat each grid component – loads, generators, each end of a transmission lines, and storage – as an individual
node. For every node, we aggregate features that capture the state of the grid component. To construct the graph, we
first extract a range of features from the observation. These features include operational parameters like cooldown
values, power injections, voltage measurements, and maintenance information. Each row in the graph’s feature matrix
corresponds to a grid asset, and each column captures a specific attribute, e.g., the power consumption of a load or the
generation capacity of a generator. Missing values for features that do not apply to a particular component type are
filled with zeros.

The edges in the graph are determined based on the physical connectivity of the grid. Specifically, nodes are connected
according to the grid’s topology, where edges represent electrical connections between components within the same
substation or via transmission lines linking different substations. Importantly, transmission line features such as power
flow, voltage, and loading are encoded directly into the nodes representing the respective line ends. This approach
allows for a uniform node-based feature representation, ensuring that all relevant grid information is captured at the
node level while maintaining a simple and efficient graph structure.

4.3.2 GNN architecture

Our GNN architecture employs Graph Attention Network (GAT) [22] to model relationships between grid components,
using attention mechanisms to weight the influence of neighboring nodes and thereby prioritizing critical connections,
such as heavily loaded lines. Each observation is first transformed into a graph structure and processed through four
GAT layers, which progressively refine the node representations. A global max pooling operation then aggregates
these node-level features into a representation for graph-level prediction. This pooled output is subsequently passed
through three feed-forward layers and an output layer whose dimensionality matches the size of the action space. The
architecture search was conducted using Optuna’s Tree-structured Parzen Estimator (TPE) algorithm [25], ensuring that
the model’s hyperparameters were optimally tuned for the task. Finally, the model is trained using Kullback-Leibler
Divergence (KLDivLoss) to minimize the discrepancy between predicted output and soft labels derived according to
Algorithm 1.

4.4 Agent

We construct the SoftGNN90% agent using the GNN with specific mechanics to ensure adequate performance. First, we
iterate through the environment and activate the agent only in case of an emergency, i.e., when the max line load ρmax

exceeds the threshold of 90%. In case the grid is stable (ρmax < 90%), we either execute a DoNothing action or revert
the topology, as described below. Otherwise, we use the model’s predictions to the current observation and sort the
actions in descending order according to the model’s output. The agent then iterates through the sorted list, validating
each candidate action for feasibility and simulate its impact on the grid using the env.simulate() method to compute
the post-action maximum line loading ρmax. The first action that reduces ρmax below the predefined threshold of
90% is executed. If no such action exists, the agent defaults to the DoNothing action. This process ensures that if an
action is selected, it mitigates the grid congestion while adhering to operational constraints. We describe the ad-hoc
enhancements as follows:

4.4.1 Topology reversion

Reverting back to the base topology of the power grid in which all busbar couplers are closed, i.e., no substation is
split, has been shown to enhance the performance of agents [10, 11]. This is due to the fact that the base topology
performs well for stable time steps such as during nights. Therefore, all agents discussed in this paper check for
topology reversion when the activation threshold has not been reached. Whenever safely possible, i.e., when reversion

6
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doesn’t cause ρmax to increase beyond the threshold of 80%, the topology reversion is applied. The threshold value is
adopted based on established literature [10], which has demonstrated that this value yields optimal performance.

4.4.2 Enhancing Topology Action Feasibility

In the context of applying substation reconfiguration actions in Grid2Op, we identified a critical limitation in the
default behavior of the topology actions using the set-bus method: when an action is applied, it attempts to set
busbar assignments for all elements, including those associated with currently disconnected lines. This behavior is
problematic because it invalidates actions that are subsequently rejected by the environment. Particularly, all actions of
both substations adjacent to the disconnected line are rendered invalid. This can be very critical when the disconnected
line is adjacent to a large substation that accounts for a significant proportion of the action space. To address this issue,
we introduce a pre-processing step that selectively removes bus assignments for all disconnected lines before applying
an action. By doing so, the action retains valid bus assignments for connected components while ensuring that no
invalid modifications are attempted for disconnected lines and hence significantly improving the feasibility of topology
actions.

4.4.3 N-1 load flows at inference time

Lastly, to enhance robustness against potential line failures, we propose an extension agent SoftGNN90%N − 1 that
incorporates N-1 security criteria into its action selection. During inference, we first filter the top 10 actions from the
sorted GNN output. For each candidate action, the agent simulates its impact under both N-0 (no failures) and N-1
(single-line failure) scenarios. It prioritizes actions that minimize this worst-case metric and selects the action with the
lowest N-1 ρmax. However, if all N-1 simulations result in overloads, i.e., ρmax ≥ 100%, the agent falls back to the N-0
criterion, selecting the action that minimizes the baseline ρmax. Consistent with the Grid2op framework and [10], we do
not perform a full N-1 contingency analysis across all lines, but instead restrict simulations to the predefined subset of
lines that can be attacked by the adversarial agent. Furthermore, we exclude line 93 from the N-1 analysis in accordance
with the findings of [9], which show that disconnecting this line inevitably triggers a cascading failure within three time
steps, regardless of the remedial action taken. Including such a pathological case would disproportionately distort the
evaluation of otherwise effective actions.

5 Experiments

5.1 Experimental Setup

As outlined in Sec. 3.1, our study utilizes the WCCI 2022 L2RPN framework, visualized in Fig. 1. We train our
agents on the publicly accessible environment data. All agents are trained for a maximum of 800 epochs, however,
early stopping is applied based on validation performance to prevent overfitting. The early stopping criterion monitors
the validation loss, and training halts if no improvement is observed for 20 consecutive epochs. The model with
the best validation performance is selected for evaluation. Each agent is trained using the Adam optimizer, with
learning rate adjustments managed by a learning rate scheduler that reduces the learning rate by a factor of 0.9 if no
improvement in the validation loss is observed for 10 consecutive epochs. The batch size was fixed to 256 while all
other hyperparameters were determined using optuna. Table 1 shows the selected hyperparameters for the GAT model
of all SoftGNN agents as well as the respective search ranges. The GAT layers apply ELU as their activation function,
while the subsequent linear layers apply ReLU. Hyperparameter search was conducted in a distributed setup on a
computing cluster featuring 8 NVIDIA A100 GPUs, and training of the final model required approximately 8 hours on
a single GPU.

We evaluate our agents using the test environment of the 2022 challenge [20] provided by RTE France. The test
environment comprises 52 scenarios, each spanning 2016 time steps. We follow the approach of [10] by employing
20 randomized master seeds to ensure statistical robustness and address variability across scenarios influenced by
environmental seed differences. For comparability, we use the same master seeds. We further use the same action
space of [10], which consists of 2000 actions from the L2RPN 2022 challenge winner [4]. Moreover, 30 expert actions
selected by RTE were added, resulting in a total of 2030 actions.

The dataset, code, and trained models will be made publicly available in a dedicated GitHub repository4, as well as to
the CurriculumAgent5 repository for compatibility with state-of-the-art RL approaches.

4https://github.com/AI4REALNET/soft_label_gnn
5https://github.com/FraunhoferIEE/curriculumagent
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Table 1: Model architecture of the soft-label graph neural network used all SoftGNN agents. The architecture search
was conducted using Optuna’s Tree-structured Parzen Estimator (TPE) [25]. Additionally, the search range of the
dropout parameter for all layers is [0,0.5].

Component Hyperparameters (Selected) Search Range

GAT Layers (input, output, heads, dropout)

Layer 0 GATConv(27, 16, 1, 0.177) dim: {16, 32, 64, 128}, heads: {1,2,4,8}
Layer 1 GATConv(16, 32, 4, 0.139) dim: {16, 32, 64, 128}, heads: {1,2,4,8}
Layer 2 GATConv(128, 64, 2, 0.174) dim: {16, 32, 64, 128}, heads: {1,2,4,8}
Layer 3 GATConv(128, 128, 4, 0.096) dim: {16, 32, 64, 128}, heads: {1,2,4,8}
Num. of Layers 4 {2, 3, 4, 5, 6}
Pooling Global Max Pooling {"max", "mean", "add"}

Linear Layers (input, output, dropout)

Layer 0 Linear(128, 1024, 0.496) dim: {128, 256, 512, 1024}
Layer 1 Linear(1024, 1024, 0.489) dim: {128, 256, 512, 1024}
Layer 2 Linear(1024, 2030, 0.0) —
Num. of Layers 3 {2, 3, 4}

Training

Learning Rate 4.14 × 10−3 [10−5–10−2]
Weight Decay 8.48 × 10−6 [10−6–10−3]

5.1.1 Ablation Study

Our ablation study evaluates the impact of soft labels and GNN models on agent performance by comparing four core
variants, which allows for a granular comparison. The variants include two hard-label approaches—an FNN model and
a GNN model—termed HardFNN and HardGNN, respectively, as well as two soft-label approaches—SoftFNN and
SoftGNN. Additionally, we analyzed the SoftGNN90%N − 1 variant from Sec. 4.4.3 to assess the synergy between soft
labels and N-1 safety-aware action selection. The agents were trained on the same data generated using Algorithm
1, with identical action spaces and the pre-processing fix for invalid bus assignments described in Sec. 4.4.2. We
further compare the performance of these models to four benchmark agents. First the DoNothing baseline, second the
expert greedy agent Greedy90% with the pre-processing fix. Moreover, we re-evaluate two state-of-the-art agents from
literature (Senior95% [10] and TopoAgent85−95% [10]) with the pre-processing fix in order to isolate the effects of the
fix. We dub these agents SeniorFix95% and TopoAgentFix85−95%, respectively.

The Senior95% is a sophisticated DRL agent that performs topology actions when ρmax exceeds a 0.95 threshold,
ensuring safe and reliable intervention during extreme conditions, while the superior TopoAgent85−95% activates
under moderate instability and additionally employs a greedy search over pre-identified robust Target Topologies to
sequentially combine actions and guide the grid toward a more stable configuration.

5.1.2 Metrics

Performance metrics include the L2RPN score (mean, median, quartiles) from the L2RPN 2022 challenge [20], a
composite score that assesses the agent’s ability to keep the power grid operational while minimizing operational costs.
The score is computed by first calculating the total operational cost for each scenario – this includes energy losses,
redispatch, curtailments, storage operations, and penalties for blackouts – and then applying a linear transformation to
aid interpretability. It is calibrated by assigning the DoNothing baseline a score of 0. Agents performing worse than this
baseline can receive scores as low as −100, while those that survive longer earn positive scores. The completion of

8



Graph-Based Soft-Label Imitation Learning for Power Grid Control A PREPRINT

every episode results in a score of 80 and for a 100 the agent must also minimize both energy loss and operational costs.
Moreover, we measure the survival time with the median survival time and the Median Survival Time across Chronic
Medians (MSTCM). The latter is less influenced by outlier performance since it averages over the chronics first [10].
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Figure 3: Comparison of agent Median Survival Times across all test scenarios, calculated over 20 random seeds. The
MSTCM is shown above the figure for reference. Chronics where all non-baseline agents survived (median survival
time of 2017 steps) were excluded (13 in total) for clarity.

5.2 Results

The experimental evaluation demonstrates the efficacy of our soft-label imitation learning approach combined with
GNNs. We summarize the results in Table 2 and visualize in Figure 3 the median survival time of each chronic across
the 20 seeds. As expected, the DoNothing baseline achieved a score of 0 and median survival time of 229 steps, while
the Greedy90% agent improved performance with a mean L2RPN score of 37.91 and a median survival time of 1014
steps.

Re-evaluating previous state-of-the-art agents with the action feasibility fix (Sec. 4.4.2) yielded measurable gains. The
SeniorFix95% agent outperformed the original Senior95%, increasing its median L2RPN score from 37.13 to 39.40 and
MSTCM from 1160 to 1468. Similarly, TopoAgentFix85−95% achieved higher performance across all metrics, though to
a lesser extent. This clearly shows the effect of our preprocessing-fix.

With respect to the ablation study, both hard-label approaches perform similarly to the Greedy90% agent with a small
advantage of the HardGNN90%. This highlights the struggles to overcome imperfect teacher agents. In contrast, the
soft-label models significantly surpass their hard-label counterparts. Among the soft-label agents, the GNN agent
outperforms the FNN variant, indicating a synergy between the enhanced GNN feature representation and soft label
learning. The SoftGNN90% agent improved the L2RPN score by nearly 15% compared to its hard-label counterpart
HardGNN90%. Particularly for very challenging runs, the SoftGNN90% agent manages to outperform the hard-label
variant and the expert and survives significantly longer. Similarly, for the FNN variants, the soft-label agent improved
the score by 8%.

Finally, our SoftGNN agents are able to outperform the state-of-the-art agents Senior95% and TopoAgent85−95% that
employ more sophisticated simulation strategies and specifically optimize for long-term performance through RL. The
SoftGNN90%N − 1, incorporating N-1 security criteria during inference, achieved the highest overall performance with
a mean L2RPN score of 44.43 and median survival time of 1299 steps. Notably, its MSTCM of 1566 surpassed even
the TopoAgentFix85−95% by 72 time steps, demonstrating the synergy between soft-label learning and safety-aware
action selection.
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Table 2: Overview of the aggregated agent performance. The table provides the L2RPN score metric statistics as well
as the median survival time and MSTCM.

Agent L2RPN Score Survival Time

x̄ σ x̃ Q1 Q3 x̃ MSTCM

DoNothing 00.00 0.00 00.00 00.00 00.00 229 383

Greedy90% 37.91 3.89 37.07 35.62 40.78 1014 1280

Senior95% [10] 37.13 4.49 37.21 33.48 39.84 988 1160
SeniorFix95% 39.40 2.98 39.50 37.14 41.25 1026 1468

TopoAgent85−95% [10] 41.26 3.01 40.41 39.41 43.69 1232 1436
TopoAgentFix85−95% 41.81 3.11 42.17 40.33 44.00 1263 1494

HardFNN90% 37.54 3.87 37.08 35.06 40.22 1020 1114
SoftFNN90% 40.73 4.16 40.54 36.60 43.64 1113 1316

HardGNN90% 38.28 3.58 37.95 35.85 40.08 1048 1255
SoftGNN90% 43.84 3.60 43.96 41.40 46.09 1293 1479
SoftGNN90%N − 1 44.43 3.27 43.49 42.33 47.34 1299 1566

We used Welch’s t-test [26] to compare the SoftGNN90%N − 1 agent against Greedy90%, HardGNN90%, SoftFNN90%,
and TopoAgentFix85−95%, and in all cases rejected the null hypothesis (p < 0.05; see Tab. 3), indicating significant
differences. D’Agostino’s test[2] confirmed that the data adhered to normality.

Table 3: Test Results of the Welch’s t-test [26] with the hypothesis H0 ∶ µi = µj against the alternative hypothesis
H1 ∶ µi ≠ µj .

H0 Hypothesis p-value

H0 : µGreedy90% = µSoftGNN90% N−1 1.4 × 10−6

H0 : µHardGNN90%
= µSoftGNN90% N−1 1.6 × 10−6

H0 : µSoftFNN90%
= µSoftGNN90% N−1 0.003

H0 : µTopoAgent85−95% = µSoftGNN90% N−1 0.013

These results underscore three key trends: (1) Soft-label IL significantly outperforms hard-label IL, (2) GNNs exploit the
grid topology to improve decision-making, and (3) post-hoc N-1 evaluation further elevates performance by prioritizing
N-1 resilient actions.

6 Discussion

The experimental results demonstrate that our soft-label imitation learning (IL) approach, which leverages soft scores
over viable topology actions, consistently outperforms both hard-label IL methods and the expert agent itself. This
section synthesizes the key insights and contextualizes them within the landscape of IL.

Conventional hard-label IL methods inherit and amplify the flaws of the expert by enforcing rigid, deterministic policies.
Our results show that both the HardFNN90% and HardGNN90% agents are on par with the Greedy90% agent while
performing significantly worse than their soft-label counterparts. This gap underscores how hard labels propagate the
expert’s biases, such as favoring in-optimal actions that might mitigate overloads for singular grid states but lead to
unstable topologies for following states and hence disrupt long-term performance.

In contrast, soft labels enable the agent to generalize across states by learning structural patterns in the action space
rather than memorizing individual decisions. By learning from soft scores, the model observes which actions are
effective for each scenario and infer which actions are universally effective. This also reduces the label noise and the
chance of overfitting to singular sub-optimal actions. We argue that the soft labels work like a confidence score, where
the confidence decreases whenever there are many viable actions. This avoids overfitting to the action with the highest –
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yet not far off – score. Especially in these low confidence situations where the scores are distributed among multiple
effective actions, the exact order of the actions is less important for the model to predict. This is consistent with the use
of the KL divergence loss which doesn’t account for the order of the predictions but rather the element-wise deviations
from the target. Hence, the overall viability of actions is assigned more importance than the exact order according to the
labels. This fits our use case perfectly, since it is merely important to bring line loads below a certain threshold. Because
the model is able to observe the richer soft label, it is able to assess the general effectiveness of actions, resulting in a
tendency to rank actions higher that contribute to reducing line loads in the training set more frequently.

It is even desired to output multiple action recommendations, which can be evaluated with more scrutiny, such as to
their impact on the N-1 load flows. Our SoftGNN90%N − 1 agent does exactly that for the top 10 actions and achieves a
higher score and longer survival time. The flexibility of having multiple recommendations for operators is critical for
power grids, where topology optimization must not only reduce line load, but also consider other optimization tasks,
such as N-1 security or the topology depth [23].

Bridging our results to recent advances in IL, [27] demonstrated that confidence scores which indicates the quality
of demonstrations enable IL agents to recover optimal policies from imperfect data. Similarly, our soft labels can
be interpreted as such confidence scores. They show that reweighting imperfect demonstrations using confidence
signals improves policy robustness. By borrowing this principle to power grid control, we show that soft labels surpass
the performance of the imperfect expert by synthesizing a richer understanding of effective actions. By encoding
uncertainty through soft labels, the agent avoids over-committing to suboptimal decisions and is therefore more robust
to unseen grid states. It’s noteworthy to point that the same phenomenon, of students models outperforming expert
models as agents, was also confirmed by [8].

The integration of GNNs amplifies the benefits of soft labels by explicitly modeling the topological structure of the
power grid. While the soft-label FNN agent improved performance over its hard-label counterpart, adding a GNN
achieved the highest scores and median survival times. GNNs enhance decision-making by propagating congestion
reduction strategies across interconnected substations and lines, ensuring that physical grid constraints are considered.
This result is consistent with recent studies [6, 8].

Applying Machine Learning (ML) techniques in real-world control rooms as decision support for (topological) remedial
actions is still in its infancy. For example, the GridOptions tool [24] is one of the first AI-based decision-support tools
deployed in a TSO control room. However, the scope of the first version of the GridOptions tool has been limited in
several ways [12]. In particular, the optimization approach does not exploit ML yet, and, hence, is slow and inflexible.
Consequently, our method’s success has direct relevance to real-world grid operations. By training on diverse action
soft scores, the agent becomes resilient to unexpected grid disturbances, e.g., equipment failures or renewable volatility.
Our approach maximizes the utility of topology actions by identifying high-impact reconfigurations and therefore
reduces the need for costly redispatch. Since we deal with critical infrastructure, our system is developed solely as
a decision-support tool that provides action recommendations while leaving the final decision-making authority to
qualified human operators.

While our approach marks a significant advancement, several challenges remain. Future work could explore action sam-
pling strategies as well hybrid approaches applying RL fine-tuning to IL models to capture true long-term dependencies.
Scaling to real-world sized power grids with different topologies will validate the method’s broader applicability.

7 Conclusion

In this study, we introduce a novel imitation learning framework that leverages soft labels – derived from comprehensive
load flow simulations – to capture multiple effective topology actions in power grid control. Our approach overcomes
the limitations of traditional hard-label methods, which tend to rigidly follow a single expert decision and propagate its
biases. By integrating graph neural networks, our agent learns to capture the grid’s inherent spatial structure, leading to
an improved performance. The impact of the proposed agent was studied on a benchmark IEEE 118-Bus transmission
system. We find that the proposed method outperforms state-of-the-art RL agents and the greedy expert itself, showing
the potential of soft-label imitation learning.
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[22] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks (2018),
https://arxiv.org/abs/1710.10903

[23] Viebahn, J., Kop, S., van Dijk, J., Budaya, H., Streefland, M., Barbieri, D., Champion, P., Jothy, M., Renault, V.,
Tindemans, S.H.: GridOptions Tool: Real-world day-ahead congestion management using topological remedial
actions. CIGRE Science & Engineering (2024)

[24] Viebahn, J., Kop, S., et al.: Gridoptions tool: Real-world day-ahead congestion management using topological
remedial actions. CIGRE 2024 Paris Session (2024)

[25] Watanabe, S.: Tree-structured parzen estimator: Understanding its algorithm components and their roles for better
empirical performance (2023)

[26] Welch, B.L.: The generalization of ‘student’s’ problem when several different population variances are involved.
Biometrika 34(1/2), 28–35 (1947), http://www.jstor.org/stable/2332510

[27] Wu, Y.H., Charoenphakdee, N., Bao, H., Tangkaratt, V., Sugiyama, M.: Imitation learning from imperfect
demonstration. In: International Conference on Machine Learning. pp. 6818–6827. PMLR (2019)

[28] Xu, P., Duan, J., Zhang, J., Pei, Y., Shi, D., Wang, Z., Dong, X., Sun, Y.: Active power correction strategies based
on deep reinforcement learning—part i: A simulation-driven solution for robustness. CSEE Journal of Power and
Energy Systems 8(4), 1122–1133 (2021)

[29] Yoon, D., Hong, S., Lee, B.J., Kim, K.E.: Winning the l2rpn challenge: Power grid management via semi-markov
afterstate actor-critic. In: International Conference on Learning Representations (2021)

[30] Zhao, Y., Liu, J., Liu, X., Yuan, K., Ren, K., Yang, M.: A graph-based deep reinforcement learning framework for
autonomous power dispatch on power systems with changing topologies. In: 2022 IEEE Sustainable Power and
Energy Conference (iSPEC). pp. 1–5. IEEE (2022)

[31] Zhou, B., Zeng, H., et al.: Action set based policy optimization for safe power grid management. In: Machine
Learning and Knowledge Discovery in Databases. Applied Data Science Track: European Conference, ECML
PKDD 2021 (2021)

13

https://arxiv.org/abs/1710.10903
http://www.jstor.org/stable/2332510

	Introduction
	Main Contributions

	Related Work
	Power Grid Setup
	Environment
	Action Space

	Methodology
	Greedy Expert
	Soft Labels
	Utilizing the inherent graph structure of power grids
	Graph Construction
	GNN architecture

	Agent
	Topology reversion
	Enhancing Topology Action Feasibility
	N-1 load flows at inference time


	Experiments
	Experimental Setup
	Ablation Study
	Metrics

	Results

	Discussion
	Conclusion
	Acknowledgements

