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Abstract. In the context of the energy transition, with increasing integration
of renewable sources and cross-border electricity exchanges, power grids are
encountering greater uncertainty and operational risk. Maintaining grid sta-
bility under varying conditions is a complex task, and power flow simulators
are commonly used to support operators by evaluating potential actions before
implementation. However, traditional physical solvers, while accurate, are often
too slow for near real-time use. Machine learning models have emerged as
fast surrogates, and to improve their adherence to physical laws (e.g., Kirch-
hoff’s laws), they are often trained with embedded constraints—known also as
physics-informed or hybrid models. This paper presents an ablation study to
demystify hybridization strategies, ranging from incorporating physical con-
straints as regularization terms or unsupervised losses, and exploring model
architectures from simple multilayer perceptrons to advanced graph-based net-
works enabling the direct optimization of physics equations. Using our custom
benchmarking pipeline for hybrid models called LIPS, we evaluate these models
across four dimensions: accuracy, physical compliance, industrial readiness,
and out-of-distribution generalization. The results highlight how integrating
physical knowledge impacts performance across these criteria. All the imple-
mentations are reproducible and provided in the corresponding Github pag(ﬂ

Keywords: Power flow simulation - physics informed machine learning - com-
prehensive benchmark.

1 Introduction

To enable the power grid management and ensure the stability, the grid operators
should continuously monitor the infrastructures and suggest remedial actions when
necessary. However, such actions cannot be applied directly on the grid without any
prior impact analysis as they may cause damages in the worst-case scenarios. The
integration of renewable energy sources, e.g., wind and solar, further increased the
uncertainty level and required the power systems to be flexible [1]. Hence, power
flow simulations are extensively used to help grid operators in their decision-making
process. The simulations allows to study different scenarios or solutions and simulate

3https://github.com/Mleyliabadi/pinns-powergrid
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the impact of their actions in a digital environment, before their application on the
real grid.

In the real-world scenarios, thousands of these simulations may be required,
to avoid any nonlinear effect of some local changes. The power flow simulations
are currently based on the resolution of the physical equations which are generally
solved using iterative numerical optimization methods such as Newton-Raphson [19].
Although these methods have the advantage of being precise and compliant with
respect to physical constraints, their exponential time complexity does not allow their
use in a large-scaled grid.

In this context, various studies have been interested in the use of machine learning-
based approaches [4]. They have also been used for power flow computation [5}/8].
The graph neural networks are also successfully used for this purpose [3}/14]. Their
fast inference time and leveraging the properties derived from graph theories may be
a key-enabler to replace the complex physics-based solvers. Among the disadvantages
of these approaches, we may cite their generalization problems (e.g., grid scale-up
and unseen data), physics noncompliance and to be dependent on the quality and
the volume of the data.

Recently, the physics-informed neural networks (PINNSs) [16] are successfully ap-
plied in various domains to solve physics-based problems such as fluid dynamics [20],
scientific simulations [9] and weather forecasting [11]. Various similar works are also
conducted for power flow simulations [6,(12,[15]. As such, the physical constraints may
be leveraged in different ways to make the data-driven approaches more compliant
to the physical context. Among the most used strategies we can cite the direct use
of the physics equations as the optimization objective during the training [6], warm
start points using machine learning followed by optimization [2}22], or their use as a
regularization term. However, each of these strategies comes with their pros and cons.
Most of the studies use one or another, but do not report and compare their results
using a set of standardized and comprehensive evaluation criteria.

In this paper, we try to bridge this gap; that is, to design a set of step-by-step
studies to show the impacts of considering physical constraints whether as a regu-
larization term in a simple neural network (MLP), or by using a two-stage approach
where the warm start points inferred by an MLP are fed to a message passing graph-
based approach optimizing directly the physics equations. We also suggest evaluating
performance using an extensive benchmark through various evaluation criteria cate-
gories based on our Learning Industrial Physical Simulation (LIPS) framework [13]. In
addition to traditional machine learning metrics, using this standardized framework,
we evaluate the performance with respect to physics compliance, out-of-distribution
generalization and industrial readiness. All the studies provided in this paper are also
available on the Github repository. All the datasets used for the training and evalua-
tion of models are designed and generated for the sake of this study by considering
real-world scenarios and could easily be reproduced using the provided scripts.

In different designed studies, we consider the steady-state hypothesis of observa-
tions by considering various grid configurations. These configurations may reflect the
actions that the grid operators may take in different scenarios to keep the gridsin a
stable state. As this works aims to be also didactic and simple, we use a Direct Current
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(DC) solver for the generation of different scenarios.We make use also of two different
grid sizes for the experiments as a way to evaluate the scale-up capability of different
benchmarked approaches.

The rest of the paper is organized as follows. Section[2]describes the general frame-
work of the study including the power flow simulation problem and the technical
details of the generated datasets. Section 3| provides the details of different studies,
along with graphical visualizations, that are designed to solve the power flow problem
whether using pure machine learning techniques or their physics-informed variants.
Section[d]presents the experimental settings and the corresponding benchmark re-
sults. Finally, Section[5|concludes the paper by highlighting insights for future works.

2 Problem framework and datasets

As mentioned, to operate the power grid in near real-time, a high number of power
flow simulations are required by the operators to study the impact of the potential
remedial actions. In addition to the industrial requirements such as fast simulations
and scale-up capabilities, these simulations should be representative of real-world
power grid dynamics, i.e., they should be reliable in various configurations where
the data distribution could be slightly changed. For the models to be compliant to
physical laws, they should consider them as constraints during the optimization. The
next section presents the technical details of physical solvers which are the mostly
used tools for simulations of power flows. It follows by an introduction of the datasets
that are generated for the purpose of this study. Table(l|presents the notations that
are used throughout the paper.

2.1 Physical solvers

Physical solvers which are currently used for the grid simulations are based on the
resolution of power flow equations [18}21]. These equations for the alternative current
(AC) are given by:

0=— pr+ XX _ 10kllvml(gk,m - c08(Ok — Om) + by, Sin(Ok — 0,,)) Active power;
0= gr+ anzl [Vl vml(8k,s - Sin@k — 0,) — by cos(0 —0,,)) Reactive power,

where gi,, and by, are real and imaginary parts of the admittances connecting the
nodes k and m. To solve these equations, an iterative optimization algorithms like
Newton-Raphson may be used. Such iterative methods require a high number of
steps to be converged and do not satisfy the near real-time requirement of power flow
simulations. Hence, several contributions in state-of-the-art are interested in the use
of physics-informed machine learning to cope with this problem. However, none of
these papers provides an in-depth analysis of considering the physical knowledge
when using machine learning algorithms based on neural networks.

To simplify the power flow simulation problem, in this paper we suggest to use
the direct current (DC) power flow system which reduces the physical equations to:

K
0= —pr = ). brjOr-6)). ®)
j=Lj#k
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Table 1: Notation table

Symbol|Description

i Index associated with an observation (sample)

k Index associated with a grid node

l Index associated with a power line

or Index associated with the "origin" extremity of a power line by convention
ex Index associated with the second extremity of a power line by convention
Pk Active power at node k

qk Reactive power at node k

Vg Voltage at node k

0 Voltage phase (phasor) at node k

p[ Active power flow over line /

qé Reactive power flow over line /

a’ Current over line /

T Topology vector indicating the bus connectivity

L Number of power lines in the grid

K Number of substations (nodes) in the grid

B Number of buses in the grid

N Number of samples in training set

M Number of samples in test set

The DC simplifies the AC equations by assuming small phasors (voltage angles) dif-
ferences and implying constant bus voltages (1 p.u.). DC does not generate reactive
power. This means that, in a DC system, only real (or active) power is transmitted.
These make the DC solver significantly faster to compute in comparison to AC solvers.

2.2 Datasets

Two different power grids with different sizes are investigated in this paper. Their
characteristics are presented in Table[2] The first ones includes a set of 14 nodes and
20 power lines. Due to its small size, the non-linear impact of topological changes
propagates more severely throughout the grid. To gain insight into the scalability of
the models, a slightly larger grid with 36 nodes and 59 power lines is also considered.

A specific scenario is designed for the generation of datasets using a DC solver
and lightsim2gricﬂ Python package. In this scenario, we consider a set of reference
topology which are randomly applied to each sample (observation). The reference
topology may include the grid configurations where the elements connected to each
substation are randomly connected to one of two bus bars at each node. It could also
include the original observation without any changes (with a predefined probability).
On top of this reference topology, we consider a set of additional operations including
power line disconnections and further bus bar reconfigurations. In total, four different
datasets are generated representing the following characteristics:

 Training dataset: it includes 100,000 samples. In addition to the reference topolo-
gies, sampled randomly, it may include at most one line disconnection;

4mttps://github.com/Grid2op/lightsim2grid
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Table 2: Two environments considered in this study along with their characteristics
Env name IEEE 14 NeurIPS 2020

Grid

# substations 14 36
#lines 20 58
# generators 6 22
#loads 11 37

o Validation dataset: it includes 10,000 samples and presents exactly the same
distribution as the training set. This is used to analyze the over-fitting problem of
ML-based approaches;

o Test dataset: it includes 10,000 samples. In addition to the randomly sampled
reference topologies, it includes one random power line disconnection for each
observation;

o Out-of-distribution (OoD) dataset: it includes 10,000 samples. It is considered as a
secondary test data set to evaluate the generalization capability of the models on
the observations represented by a slightly different distribution than the training
set. In addition to reference topologies, it includes two simultaneous power lines
disconnections which have never been considered in other datasets.

3 Study design

In this section, different neural network architectures along with their technical and
theoretical details are described. We start with the simplest architecture without con-
sidering the physical constraints. It is followed by more complex architectures, where
the physical constraints may be used as a regularization term or as the optimization
objective. All the studies are accompanied by a schematic representation. In all these
graphical representations, the first row presents the general steps, the corresponding
visualization and architecture are shown in second row, and last row represents the
details concerning the optimization objective (loss function).

Multi-layer perceptron (MLP) The first configuration consists in considering the
power flow computation as a simple supervised regression problem. Figure[I|demon-
strates the entire procedure for computing the power flow. As can be seen, the MLP
takes the injections (P4, P1oaq) alongside the topology vector (t) i.e., the bus con-
nectivity and line status as inputs, and predicts the phasors 0=M LP(Pyroa, Proad,T)
at the power lines. The active powers at the origin P,, and extremity P, sides of the
power lines could be easily computed from the predicted phasors in a post-processing
step. In this configuration, the loss function is simply the mean squared error between
the predictions of the MLP and the ground-truth values.
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Step Inputs MLP hidden layers Predictions Post-processing
o N\
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Fig. 1: Multi-layer perceptron (MLP). The inputs X (injection + topology) in blue ,
the model predictions y = (6,r,0.) in orange (phasors) and post-processed outputs
(Por, Pex) corresponding to active powers in green.

Message passing mechanism (MP) In this section, we provide the technical details
concerning the message passing mechanism for power flow simulation, which en-
ables the computation of physical constraint using graph theory. The classic message
passing mechanism, as demonstrated in Figure[2] allows to propagate messages from
the neighboring nodes. The propagation consists of three steps: message computa-
tion, aggregation, and update. By adding more layers (increasing the hops in the graph
terminology), each message could include the information contained in farther nodes
in the graph. This is shown by changing the nodes colors from light gray to green from
the second hop neighbors.

Step 1-hop Neighbors 2-hop Neighbors K-hop Neighbors Legend

Generator

Architecture

Substation

\

Power line

Messages | m! = @jciiny (05 X vi5) ™2 = ®jc(inn (05 X viy) mE = ®jeqiny 8 % vis)

Fig. 2: Message-Passing (MP) mechanism demonstration. The message includes the
information from farther nodes by adding extra layers (k-hop neighborhood). The
maximum number of effective layers is equal to K which is equal to the number of
nodes in the graph. In power grid context, each message represents the incoming
power flow to a node i from a neighboring node j which is obtained by multiplying
the phasor at node j with the admittance value on the power line connecting two
nodes (0; x y;;).
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However, this may not be the required behavior for power flow computation, as
we want the messages to represent the underlying physics equation. As shown in the
last row of Figure 2} each message is an aggregation of the information contained
in neighboring nodes multiplied by the admittances on power lines. Alternatively,
it represents the power flow that entered a specific substation. In the following, we
exploit this message-passing mechanism in two different ways:

1. To compute the local conservation law. This is very helpful, as it allows to compute
the physical constraint, which could be exploited by the auto-differentiation of
neural networks. In the backward step, it enables the estimation of neural network
parameters with respect to the gradients of local conservation law. (see Figure3);

2. To update the phasors using physics equation. The same message passing mecha-
nism could be used to compute the new estimations of the phasors. This is used
by graph neural solvers, explained in next sections.

Regularized MLP (MLP Reg) The regularized MLP adds a regularization term into
the loss function of a classical MLP and adopts a slightly different architecture, as can
be seen in Figure[3] It uses the same set of inputs as MLP, but to compute the local
conservation error through the message-passing mechanism, it predicts the phasors at
the bus level instead of the extremities of the power lines. The local conservation error
LC,;ror obtained using a single message passing layer is considered as a regularization
term in the loss formulation and represents the physical constraint that the model
output should satisfy. Once the phasors are predicted, the active powers at the power
line extremities could be easily computed at the post-processing step.

Step Inputs MLP hidden layers Predictions Local conservation (LC) layer Post processing

s No trainable parameters B

Architecture

mi = ey (0 % vi)
LC;rvav = (P;rod - }Dlload) —m;
L J

B
Loss Loss = [0 =613 + > IILCill3
i

Fig. 3: Regularized MLP. The inputs X (injections + topology) in blue, the model predic-
tions y = {ébus}busgup_qm in orange (phasors) and post-processed outputs (P, Peyx)
corresponding to active powers in green. A local conservation (message passing) layer
is added after the predictions to compute physical constraint error which is consid-
ered as a regularization term in the loss function.
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Message-passing and physics constraint as optimization (MP Opt) In this specific
study, we consider the message-passing mechanism for both updating the phasor
values and to compute the local conservation error. As can be seen in Figure[d} the
phasors are initialized with zeros (flat initalization). Next, the two message-passing
layers to update the phasors and to compute local conservation are interleaved. In
the following, we explain the theoretical details of the update step.

Step Initialization Phasor update (1) Local Conservation Phasor update (G) Local Conservation  Post processing

Architecture

- - e -
Messages mi = 69‘7&{;\/(1))(9;“) X Yij) Mi = BjefiNG)) (92'1) X Yij) m; = @;&(N(;))(é‘ﬁ Y x Yij) mi = 69]5(1,N(1)}(95G) X Yij)
i it
Update 60— (Pprod = Pioad) = mi 66 _ (Pprod = Pioad) = mi
‘ Yis ’ Yii
- ) _ _ _ © _ B B
Objective BE;” = (Pprod — Pioad) — i E;" = (Pyrod — Pioad) —mi

Fig. 4: Message-passing as physics optimization with flat initialization of phasors (MP
Opt). The architecture consists in interleaving two message-passing layers to compute
the new s (optimization) and local conservation error.

The computation of new phasor values over message-passing layers is based on
the local conservation law formulation, which for a given substation i is given by:

d 4
me _ pll‘oad — Z pt, 3)
CeN(i)

where pf designates the power flow at a power line ¢ connected to a substation i. This
is equivalent to:
rod load
pi = pit= Y 0%y, “)
JEli,N(@)}
where 6 represents the phasor at a neighbor node j and y; ; is the admittance between
two adjacent nodes i and j which is extracted from the admittance matrix Y. To

compute the new phasor values at a node i, by considering N (i) = {u, v, w} as its
neighbors (see Figure[d), the Equation[4becomes:

prod load _

p; - p; =0 xyi)+ Oy xyi) + Oy xyiy) + , (5)
—— ——
message from  message from
node u node v

where y;; is the admittance at the node i. As can be seen, the messages computed to
update the phasor include only the information contained in the neighboring nodes,
and not the graph node for which the update should be computed. This could be
managed using self-loops in message-passing mechanism. Finally, the new value of
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our target, which is the phasor 0 at node i and for a layer k, is computed as follows:

prod

g _ PET =P~ (OGY x i) + 00 % yin) + Ol x yiw)]
® .

Yii

(6)

Finally, the local conservation error could easily be calculated for each layer k and
at each node i from Equation (@) as:

(k) _ prod load
EX =pl"C —piett— % 0%y ()
Jeli,N(i)}

Physics-informed message-passing with warm initialization (PIMP) This last study
consists in adding a learning paradigm into the optimization-based solution intro-
duced in the previous study. As can be seen in Figure[5} instead of flat initialization,
the phasors are initialized using an MLP neural network (warm initialization). We
expect that this initialization, by introducing learnable parameters, would reduce
the required number of iterations (message-passing layers) for convergence. As such,
back-propagation takes into account the graph operations when updating the MLP
parameters, which would allow the better initialization of phasors by considering
implicitly the physical constraint. In contrast to studies that exploit the GNNs [14],
our approach relies on the resolution of physics equations.

Step Initialization Phasor update (1) Local Conservation Phasor update (G) Local Conservation  Post processing

P,
>, o
\
D\
Architecture ‘5‘1@
) P,
T
w

Fig. 5: Physics-informed message-passing (PIMP) with warm initialization 0O =
MLP(Pyrod> Proad, T ). The messages, updates and objectives are exactly the same
as the one shown in Figure

4 Benchmark and evaluation

This section introduces the experimental setups used by each technique during the
evaluation, details the benchmark testbed and the evaluation criteria and presents
the obtained results.

4.1 Experimental settings

The Direct Current (DC) solver from lightsim2grid package is used for data generation
and as the baseline for benchmarking. For more reliable results, all the experiments are
executed five times and the results are reported using mean and standard deviation.
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The hyper-parameters of all the introduced techniques are fine-tuned using the
Nevergrad library [17]. Moreover, a dynamic learning rate reducing technique (i.e.,
reduce learning rate on plateau) is used, which exploits the validation loss for a
better learning rate adjustment during the training of the models. The training of
physics-informed models often starts with rapid improvements (as the model learns
the rough shape of the solution). As it tries to satisfy stricter physics constraints,
loss reduction slows down and avoids the overfitting and premature stagnation. The
details concerning the hyper-parameters could be seen in the Github repository.

4.2 Benchmark testbed and evaluation criteria

The Learning Industrial Physical Simulation (LIPS) framework [13] is used as the
benchmark testbed and evaluation pipeline. It suggests to evaluate the performance
of the models with respect to four categories of evaluation criteria:

» Machine learning related: The precision of the models to predict the output vari-
able (the phasors ) is computed using the mean absolute error (MAE) and mean
absolute percentage error computed on the 10% of highest values (MAPE90);

e Physics compliance: To examine the physical compliance of different approaches,
we propose to evaluate them with respect to a set of power grid physical laws
considered as metrics. These evaluation criteria and the corresponding metrics
are detailed in Table[3}

Table 3: Physical constraints considered for the evaluation of physics compliance
category. The predictions should be conform, at best, to all of these constraints.

ID Type Measure Description

Basic

P1 Losses positivity %Zé 1 (Pt plr<0.) Proportion of negative energy losses

1

Taise = 0ine l(b‘CQIH%,bOJ Proportion of non-null g, p or g values

P2 Disconnected Line

Tfet (P PG

P3 Energy Losses Gen €[0.005,0.04] Energy losses range consistency

Uni-dimension Law

P4 Global Conservation MAPE((Prod — Load) — (257:1 (Pex + ﬁg,))) Mean energy losses residual

P5 Local Conservation MAPE[(pZmd - pgc"“d) — Xieneigk) ﬁi)) Mean active power residual at nodes

Out-of-distribution generalization: To evaluate the generalization capability of
the models, the same machine learning metrics are computed using the OoD
dataset. This dataset includes a slightly different distribution (two simultaneous
disconnected power lines) compared to training and test datasets (only one power
line disconnection);

Industrial readiness: To evaluate the industrialization capability of the models, we
have considered the acceleration or speed-up over the physical solver (DC solver).
To consider the scaling capability of different studies, we have also considered
two power grids of different sizes, namely IEEE 14 and NeurIPS small including
36 substations (see Table[2).
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4.3 Results

Tabledlsummarizes the benchmark results for the various studies introduced in the
previous section. These studies are compared through the four previously mentioned
categories of evaluation criteria. The performances are computed between the pre-
dicted phasors (§) and ground-truth values (DC-solver). For the physics compliance
category, we only consider the local conservation error in terms of the violation per-
centage (P5 in Table[3), as all the methods satisfy the remaining considered physical
constraints. The best performances for training-based approaches (excluding the MP
Opt) are highlighted in bold.

Table 4: Benchmark table. The results are presented using mean + standard deviation
(over 5 runs). The compared methods are multi-layer perceptrons (MLP), MLP with
physical constraint as regularization (MLP Reg), message-passing and physics con-
straint as optimization (MP Opt) and physics-informed message-passing with warm
initialization (PIMP). The output variables are phasors at each node of the graph (9).
The considered criteria are Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) computed on 10% of lines with highest values (MAPE90), Inference time
represented by the speed-up with respect to physic solver (Inf. speed-up), Out-of-
distribution Generalisation (OOD Gen.), and physics compliance category (Physics
comp.) computing (P5) local conservation laws on both test and OOD datasets.

Evaluation Criteria Categories

ML-related Readiness 00D Gen. Physics Comp.
Methods Variable = MAE MAPE90 Inf. speed-up MAE MAPE90 Test 00D
MLP 0 le-2t1le-3 2e-3+2e-4 4 4e-1+1e-2 le-1+2e-3 40%+1% 47%+.5%
iMLPReg 0 6e-2+2e-2 le-2+5e-3 4 6e-1+4e-2 le-1+9e-3 35%+1% 42%+1%
23]
& MP Opt 8e-4 + 7e-9 4e-3 £ 7e-9 1 le-2+3e-9 4e-3+8e-9 0% 0%
PIMP 2e-3+2e-5 7e-4+6e-6 2 2e-2+1e-4 8e-3t5e-5 1%+.1% 13%+.7%
é MLP le-1+2e-3 5e-2+le-3 8 2e-1+2e-3 le-1tle-3 50%* 1% 50%+1%
a
::% MLP Reg 7e-1+2e-1 4e-1+8e-2 8 9e-1+2e-2 5e-1+8e-2 45%+1% 47%+1%
E MP Opt 4e-3+le-9 2e-3+6e-9 1 le-2+1e-9 4e-3+4e-9 0% 0%
o
E PIMP 4e-2+3e-5 2e-2+2e-3 4 6e-2t1e-3 3e-2+4e-3 20%+.5% 26%+.5%

Analysis of IEEE14 environment We can observe that the best results are achieved
using the MP Opt, which updates the target values based on physics equations and
yields a very low standard deviation. It may seem to be the normal behavior, as
this approach does not include any stochastic initialization or operation during the
optimization. It requires 100 iterations (message-passing layers) to converge to the
optimal solution, where the local conservation error is very close to zero. One of
the objectives of considering this study was to analyze whether the addition of some
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learnable parameters for the initialization phasors #” may allow reducing the number
of required message-passing layers.

To conduct this experimentation, we have reduced the number of message-
passing layers by half (60 layers) and added an MLP with four hidden layers for
the initialization of phasors (PIMP). It shows significantly better performances than
MLP-based approaches and is comparable to that of the pure optimization-based
approach. The main difference could be seen with respect to the physics compliance
criteria. Despite the notable improvement obtained over MLP-based approaches
(reducing the local conservation error by more than 30%), the compliance remains
lower than MP Opt for the OoD dataset (13% of law violation). Adding more message-
passing layers allows to improve further the physics compliance, which indeed is
directly related to the model complexity.

The two MLP-based approaches obtain very close performances with respect to
ML-related criteria for both test and OoD datasets. They show also the best speed-
ups behavior with respect to the DC physical solver. The regularization through the
penalization of the physics term allows to reduce slightly the local conservation
error for MLP Reg. During the experimentation, we have observed that this approach
requires more iterations (epochs) for the better convergence than the MLP without
any regularization. It should also be mentioned that the DC solver implemented in
lightsim2grid is very fast and the optimization could be computed in parallel for
the considered scenario (a scenario known also as security analysis). This makes
acceleration improvement quite challenging.

Analysis of NeurIPS environment (36 nodes) A similar pattern could also be observed
for the larger grid including 36 substations. For this more complex power grid, the
MP Opt method requires substantially more iterations to converge (350 iterations
or message-passing layers). The performance slightly degrades compared to the
smaller grid across all evaluation criteria, with the exception of the speed-up. This
highlights the role that hybrid models can play when applied to more realistic, large-
scale grids. For the sake of this experimentation, the number of message passing
layers (300 message passing layers) required by MP Opt to fully satisfy the physical
constraints is halved for PIMP. We can observe clearly much better compliance with
local conservation laws compared to MLP-based approaches. At the same time, an
increasing trend in physical constraint violation could be observed which is correlated
to network complexity, and may necessitate a more rigorous enforcement of such
physical constraints.

Convergence analysis The convergence behavior of these approaches are compared
in Figure 6] for IEEE14 environment. The convergence is represented using mean
losses (solid lines), and the highlighted area around the mean represents the standard
deviation over 5 runs. For the approaches requiring training, the validation loss is
also shown in green in addition to the training loss which is shown in blue. It can be
observed that all the approaches converge to a local optimum with slightly different
convergence behaviors. The MLP-based approach (see Figure which does not
consider the physical constraint converges enough fast with low variation of the loss
over the data. However, the regularized MLP which considers the physical constraint
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as penalization of the loss, shows some variations in the beginning of the training
due to the high values of local conservation error, and stabilizes when the predictions
approach the ground-truth values (see Figure[6b). The MP Opt approach does not
requiring training and optimizes the local conservation error directly through the
message passing layers and updating the phasors. Finally, the PIMP with warm initial-
ization (see Figure[6d) presents more stabilized training curve than those obtained by
MLP and converges faster than the MP optimization-based approach.

To analyze the difference between two Message-passing based approaches in
greater details, Figure|7/|compares their convergence using the same graphic (with
both natural and log scale of local conservation errors on y-axis). For consistency, we
have considered the same number of iterations for this analysis. As can be seen, the
initialization of phasors using MLP enables the faster convergence of the approach
(PIMP), despite the reduced number of message-passing layers.

Finally, to better understand the impact of data and physics terms during the
training of MLP Reg and PIMP initialized using MLP, Figure |8 demonstrates their
behavior in separate graphics. As can be seen in Figure[8a} the physics loss (orange
curve) for MLP Reg shows high variability at the beginning of the training which
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Fig. 6: Convergence behavior of different approaches for IEEE 14 environment
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Fig. 7: Comparison of the training curve convergence between Message-Passing with
optimization (MP Opt) and Message-Passing with MLP initialization (PIMP).

stabilizes over time. However, it never reaches the optimal solution. On the other hand,
PIMP shows more stabilized physics loss behavior from the beginning of the training
and overlaps the data loss early. It could be explained by the fact that the message-
passing based approaches takes advantage of the data structure (grid topology) and
allows to be consistent to physical context by design.
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Fig. 8: Convergence behavior of physics loss vs. data loss

5 Conclusion and perspectives

This paper proposed a study design to benchmark and investigate the inner workings
of physics-informed neural networks. A unified benchmarking framework was em-
ployed to enable the comprehensive evaluation of various methods. The experimental
results indicate that pure machine learning-based techniques can achieve high accu-
racy; however, their performance often fall short in meeting real-world requirements,
particularly in terms of physics compliance and out-of-distribution generalization. In
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contrast, approaches that incorporate physics knowledge — either as a regularization
term in the loss function or as part of the optimization objective — demonstrated
superior performance across most evaluation criteria.

Furthermore, the experiments revealed that physics-informed approaches ex-
hibit strong potential in low-data regimes. These methods outperformed classical
approaches when the number of training samples was reduced. All studies presented
in this paper are fully reproducible, with implementations available in the GitHub
repository, and are evaluated using a standardized evaluation pipeline, thereby sup-
porting further research in this domain.

For didactic purposes, this study focused on modeling power flow using a DC
solver. As a direction for future work, we plan to extend this framework to the more
complex AC power flow, which additionally requires balancing voltage magnitudes. In
the current work, equal importance was assigned to the data and physics components
of the loss function. However, several techniques have been proposed in the literature
to improve convergence and enhance physics compliance. For instance, gradually
increasing the weight of the physics-based loss term has been shown to be effective
[710].

The application on real-world data may often encounter inconsistencies or other
data issues. We plan to mitigate them by incorporating the mechanisms for handling
missing or corrupted data through, for example, robust loss functions or anomaly
detection, improving the solver stability and results reliability. We also observed that
increasing grid complexity leads message-passing-based methods to require more
iterations (or layers) to converge. Consequently, their computational complexity may
increase linearly with the grid complexity. Future studies will focus on incorporating
learnable parameters into the message-passing mechanism, moving toward the use
of graph neural networks. This approach is expected to reduce the number of required
iterations.
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