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Abstract—With the growing need for AI-driven solutions in
power grid management, this work addresses the challenge of
creating realistic synthetic operating scenarios essential for devel-
oping, testing, and validating AI-based decision-making systems.
It uses spatial-temporal noise functions, predefined patterns, and
optimal power flow to model renewable energy and conventional
power plant generation, load, and losses. Quantitative and visual
key performance indicators are proposed to evaluate the quality
of the generated operating scenarios, and the validation high-
lights the framework’s ability to emulate diverse and practical
operating scenarios, bridging gaps in AI-driven power system
research and real-world applications.

Index Terms—Power network, artificial intelligence, synthetic
data, operating scenarios, open-source

I. INTRODUCTION

Modern artificial intelligence (AI) techniques, such as re-
inforcement learning (RL), are emerging as fast decision-aid
tools for real-time and predictive power network control [1].
Applying AI to such systems requires open-source digital envi-
ronments that emulate realistic physical system operations and
human decision-making, enabling effective AI development,
testing, and deployment while directly assessing decision qual-
ity. One example is the Grid2Op open-source environment,
developed by RTE, models a wide range of power system
problems, particularly congestion management, and supports
the development and evaluation of grid controllers [2].Through
different L2RPN (Learning to Run a Power Network) com-
petitions [2], calibrated virtual environments have been in-
stantiated for testing over robustness to adversarial attacks or
adaptability to increasing renewable energy share. Similarly,
the Grid Optimization (GO) competition [3] explored real-
time, day-ahead, and week-ahead market applications but was
limited to a few scenarios. Other AI-friendly environments
include Flatland [4] for railway scheduling and BlueSky [5]
for realistic air traffic simulation.

The research leading to this work is part of the AI4REALNET (AI
for REAL-world NETwork operation) project, which received funding from
European Union’s Horizon Europe Research and Innovation programme under
the Grant Agreement No 101119527, and from the Swiss State Secretariat for
Education, Research and Innovation (SERI). This project is funded by the
European Union and SERI. Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European
Union and SERI. Neither the European Union nor the granting authority can
be held responsible for them.

A key building block of these environments is the capacity
to generate realistic synthetic time series data from publicly
available datasets, preserving the spatial-temporal dependen-
cies of the original data. Synthetic data is critical for training
and validating RL-based agents across diverse grid operat-
ing scenarios, even when real data is available. Traditional
methods, such as ARIMA [6] and Copula theory [7], have
been applied to model spatial-temporal dependencies. Recent
advances in generative AI, including generative adversarial
networks (GANs) [8] and diffusion models [9], enable the
generation of energy time series, such as photovoltaic and
load data, at various temporal resolutions and grid levels.
Furthermore, other works [10], [11] focus on synthetic grid
generation using OpenStreetMap data and apply two distinct
approaches: a) an electrical algorithm combined with the
domain expertise to assign consumers to nodes and define
parameters for lines and transformers, and b) combining a
Bayesian Hierarchical Model with Markov Chain Monte Carlo
techniques.

However, testing AI-based power grid controllers requires
building coherent operating scenarios that extend beyond
spatial-temporal time series generation. These scenarios
must incorporate additional elements, such as conventional
generation dispatch, post-processing for simulated losses,
and network limits that address challenges from the energy
transition (e.g., higher integration of renewable energy
sources). This paper introduces advancements in generating
realistic synthetic operational scenarios using the Grid2Op
environment [12], a scenario-based simulator designed for
training and evaluating AI recommendation agents. The
methodology enhances the approach in [13] by improving
multivariate time series sampling and adding a conventional
generation dispatch function. Related works include [14],
which manually constructs a synthetic transmission grid
for ERCOT 2030 with RES investments, and [15], which
combines statistical modeling and optimization to generate
realistic load, renewable production, and generation offers.
Compared to these works, the main innovation from the
present paper is the generation of operating scenarios
specifically tailored to AI applications, particularly for
gymnasiums where RL agents are trained and validated.



The paper is organized as follows: Section II details the
scenario generation methodology. Section III introduces key
performance indicators (KPIs) for evaluating scenario quality,
which are used in Section IV to validate the generated time
series. Section V presents the conclusions.

II. METHODOLOGY FOR SCENARIOS GENERATION

This section presents a comprehensive framework, available
as the open-source tool ChroniX2Grid [16], for generating
synthetic data that emulate realistic grid scenarios, including
renewable energy sources (solar and wind), electrical con-
sumption (load), network losses, and economic dispatch for
conventional power plants. Pattern-based methods with spatial-
temporal noise are used for solar, wind, and load data, while
losses are generated using a pattern-based approach and further
refined with AC load flow after solving the dispatch problem.
Economic dispatch is determined through an Optimal Power
Flow (OPF) solver and depends on the prior generation of
solar, wind, load, and losses to ensure a fully characterized
system.

A. Pattern-based with Spatial-temporal Correlated Noise

This method applies a generated noise to a reference pattern,
aiming to host deviations (noise) in the original synthetic
diagram. This is applied independently of the category of data
to be generated: patternsolar, patternwind, and patternload).
In this context, since the goal is to generate data for a
network with geographic distribution and with data generation
over a certain time horizon, two types of noise are applied
hence, giving us a spatial-temporal noise function – f category

t(x,y)
– depending on the category of data to be generated. This
function is based on the following components: i) a three-
dimensional mesh (x,y,t) with independent noise points, and
ii) Spatial and temporal interpolation of this noise at a given
geographical location and timestep.

In short, the spatial-temporal noise is generated geographi-
cally and in a coarse timeline and then interpolated for the
final dataset’s requested resolution dt. The noise function
generation process is divided into three main stages, detailed
in the following subsections.

1) Three-dimensional mesh conception: A two-dimensional
reference mesh is built for each coarse time step to generate
noise functions. Given the geographical distribution of the
network, the initial dimensions and granularity follow the
user-provided parameter data and can then be adjusted or up-
dated. This adjustment procedure aims to increase the default
mesh size to cover all network nodes. This overall spatial
architecture of the mesh considers two main parameters: i)
the total length of the mesh (Lx, Ly), ii) the granularity of
the mesh (dxcorr, dycorr), representing the distance in which
the spatial phenomena are independent. Since it should also
consider temporal noise, this mesh is then made recurrent in
temporal layers, at a given coarse time resolution, depending
on the generation category (categorycorr). The objective of
having a checkered mesh (with virtual rows and columns) is to

guarantee that every network node can directly relate to the 4-
nearest mesh neighborhood. Since any provided network could
have an infinite combination of geographical coordinates, this
formulation can adjust the mesh’s size accordingly to cover
all network nodes. To achieve this, the process identifies the
largest network coordinates and determines the number of
rows (xplus) and/or columns (yplus) that must be added to the
original mesh dimensions, as described in Eq. 1.

xplus = int

(
x

dxcorr

)
+1, yplus = int

(
y

dycorr

)
+1 (1)

The final mesh structure should virtually look like the exam-
ple illustrated in Fig. 1. To each mesh node, a Gaussian noise
is automatically generated following a N(0, 1) distribution,
hence creating the NoiseNodei,t.

Fig. 1. Example coarse noise mesh for a single coarse timestep

2) Auto-correlated mesh noise: After establishing the com-
plete mesh with node-independent Gaussian noise, the next
stage aims to produce noise based on the distance to the 4-
nearest neighbors for each generator node. To prevent very
long computational execution times in scenarios with a large
number of generators, this methodology takes advantage of the
spatial and time coarse mesh resolution that is interpolated
in later stages. Following this, the next step is to apply the
spatial noise to each generator node. As seen in Fig. 1,
four distances are calculated for the respective four-nearest
neighbors (ng, i,∈ [1, 4]) using Eq. 2.

disti,t =
1√(

x− dxcorr · xng
i,t

)2
+

(
y − dycorr · yngi,t

)2
+ 1

(2)
These four distances provide sufficient information to com-

pute the generator noise corresponding to each of the four
nearest neighbors (i), as defined in Eq. 3.

GenNoiset =

∑4
i=1 disti,t ·NodeNoisei,t∑4

i=1 disti,t
(3)



3) Temporal Interpolation: The last step of this methodol-
ogy is based on a classic interpolation (linear, quadratic, or
cubic). This process allows refining the coarse noise timeline
created with t spatial layers (based on categorycorr) to the re-
quired temporal resolution. With this, the generated noise can
now cover all original data measurements since the resolution
matches accordingly. This final noise represents the f category

t(x,y)
that is applied to the respective category at a later stage.

B. Reference Patterns

The generation of solar and wind energy data, load, and
losses is guided by a predefined dataset (e.g., open data of gen-
eration profiles from ENTSO-E Transparency Platform) con-
taining a generic yet representative profile of these generation
patterns. These are classic daily to yearly patterns climbing
up during sun hours and also peaking their values during the
summer. For each category, there is a patterncategory

t , variable
in t, with annual duration and hourly resolution. It is important
to note that, in the case of wind, there are three datasets (or
profiles) for three different time horizons (short, medium, and
long) and, thus, three different noise functions. These patterns
are also internally interpolated for the final dataset requested
resolution dt and repeated for as many years as necessary.

C. Independent Additional Noise

Apart from the spatial-correlated noise, an additional noise
ns could also be added. In this sense, ns is formulated using
a regular Gaussian distribution following N(0, s), where s
represents the adjustable standard deviation of the noise. The
goal is to apply random and small perturbations to the system,
representing very short-term weather variability. In this case-
scenario, this is only applied to wind generation.

D. Solar Energy

The solar data generation follows the methodology detailed
in sections II-A and II-B and hence retrieves the respective
fsolar
t (x, y) that represents the spatial-temporal correlated

noise and the patternsolar
t with the reference solar data

pattern. The actual solar data for a given generator placed
in coordinates x, y, for each time step t will be created using
the formulation presented in Eq. 4.

solart(x, y) = Pmax·S
(
patternsolar

t ·
(
β + σ · fsolar

t (x, y)
))

(4)
where Pmax is the installed solar generator capacity; S(x)

is a smoothing function of form S(x) = 1− exp(−x), to nor-
malize data and operating a convex distribution transformation
with the objective to better fit realistic data; β (defaulted as
0.75 representing 75% efficiency) is the bias of the spatial-
temporal correlated noise, works as a way of preventing an
around-zero distribution, and also is a strategy of modeling the
efficiency of the generator; σ (defaulted as 0.8) is the spatial-
temporal noise standard-deviation that works as a weight of
the noise to be applied to the pattern.

E. Wind Energy

Wind data generation also follows the same methodology
and requires spatial-temporal correlated noise and reference
wind data patterns. This process differs from the solar gen-
eration methodology by requiring three different parameters.
So, in section II-A, instead of a single windcorr, three
values are inserted (shortWindcorr, mediumWindcorr,
longWindcorr) and, thus, three spatial-temporal noise func-
tions are, respectively, extracted. These three components
represent the spectrum of wind’s different behavior over
time with the goal of adding several types of scaling noise
in all periods. Although solar energy methodology uses a
third-party static pattern file, for wind data generation, the
pattern is constructed relying on a simple one-year oscillating
cosine (seasonal pattern) and another constant component, as
described in Eq. 5.

patternwind
t = weightconst+weigthoscil·patternwind

seas.,t (5)

The seasonal pattern is based on a full-cycle yearly cosine
associating the periods with most wind with the highest cosine
values (see Eq. 6).

patternwind
seas. = cos

(
2π

365 · 25 · 60
· (t− 30 · 24 · 60 + δt)

)
(6)

This formulation considers 2π
365·25·60 as one-year full cosine

cycle in minutes. It also considers December as the period
with the highest wind speed, granting the need to subtract one
month of minutes equivalent (30 · 24 · 60) to the cumulated
simulation time (t). This new time value should be reset to the
year’s starting point to guarantee real day/seasonal matching.
For this, it sums δt, which represents the time difference
between the first simulation period and January 1st, which
is a standard fixed reference for the beginning of the year.
Both weightconst and weigthoscil values assignment should
follow regional characterization but are defaulted as 0.7 and
0.3, respectively. This roughly shows that 70% of the wind
generation is somehow sustained, but 30% is associated with
seasonal elements and subject to changes.

The actual wind generation follows a mathematical ap-
proach close to the one applied to the solar generation but
considers the three spatial-temporal noise components – short,
medium, and long – independently (see Eq. 7).

windt(x, y) = Pmax·S
(
0.1 · exp

(
4 · patternwind

t

)
·
(
β

+ σshortWind · fshortWind
t (x, y)

+ σmediumWind · fmediumWind
t (x, y)

+ σlongWind · f longWind
t (x, y)

)
+ ns

)
(7)

This formulation takes into account the same structure as
the one in section II-D with slight differences. The parameter
β now defaults to 0.3, representing 30% efficiency and σtype



now considers three types (short, medium, long), defaulted to
0.02, 0.15, and 0.15, respectively.

F. Electrical Energy Consumption

This process follows the main steps of solar generation
and the methodology from sections II-A and II-B and hence
retrieves the respective f load

t (x, y) that represents the spatial-
temporal correlated noise, and the patternload

t with the refer-
ence load data pattern. In addition to the usual typical pattern
dataset, it also considers an external dataset with a represen-
tative weekly consumption profiling - patternload

week,t, with a
classic pattern (lower during weekends, and two daily peaks
in the morning and in the afternoon). The main patternload

t

represents the seasonal pattern and is modeled on an oscillating
cosine over a period of one year, and considers a constant and
an oscillating component with different weights (see Eq. 8).

patternload
t = weightconst+weigthoscil ·patternload

seas.,t (8)

The assignment of weightconst and weigthoscil values as-
signment should follow regional characterization, but defaults
as 5.5/7 and 1.5/7, respectively. This roughly shows that 79%
of the wind generation is somehow constant, but 21% is
associated with seasonal elements and subject to changes. As
in section II-E, the seasonal pattern also considers a specific
part of the year with the highest consumption rate (mid-
February), and hence requires a shift of 45 days (or 45 ·24 ·60,
in minutes). The remainder of the formulation remains the
same (see Eq. 9).

patternload
seas. = cos

(
2π

365 · 25 · 60
· (t− 45 · 24 · 60− δt)

)
(9)

The load data generation process complies with the previ-
ous overall methodologies but with a simpler approach, and
considers the formulation detailed in Eq. 10.

loadt(x, y) = Pmax·patternload
week,t·

(
σf load

t (x, y) + patternload
t

)
(10)

G. Network Losses

In order to account for network losses, an external yearly
loss pattern dataset is used. It contains a static pattern with
5-min resolution with absolute active network losses. If the
period to generate is larger than one year, the pattern is
repeated to cover the request generation horizon. This aims
to provide a rough estimate assisting the dispatch problem
solving.

H. Conventional Generation

This subsection details the data generation process of hydro,
nuclear, and thermic generators that follow a classic economic
dispatch process. The goal is to use the previously generated
data and optimize the network’s power flow to minimize
generation costs while meeting the demand and adhering to

the operational and other technical constraints (e.g. prioritize
low-cost sources, optimize stored resources, ensure reliability,
etc.). In this sense, this module uses PyPSA [17] library for
running the dispatch and requires the following input data:

• Non-conventional generator data (previously generated
solar, wind, load, and losses diagrams).

• Hydro reference pattern file representing seasonality and
minimum/maximum hydraulic stocks.

• Ramp mode definition (for relaxation purposes): a) hard,
all ramp constraints are considered; b) medium, thermal
ramp constraints are skipped; c) easy, thermal and hydro
ramp constraints are skipped; d) none, all ramp con-
straints are skipped.

• Generator specifications (i.e. max and min power).
• Other optimization parameters (e.g., solver, reactive com-

pensation, etc.).
The overall process aims to generate production diagrams

for all missing generators, and it is divided into three main
phases:

1) Pre-dispatch: planning stage to define non-conventional
generation levels and, hence, the load that needs cover-
age; hydro generation limits; other input data structuring.

2) Dispatch: simulation of near-real-time control and oper-
ation of the network, granting conventional generation
adjustments to match the structured demand and the
other power system pre-defined conditions. This main
stage runs an optimization module in a row for each
day, week, or month, using a provided time resolution.

3) Post-dispatch: adjustment/interpolation of measurements
(if necessary); marginal costs calculation; calculation of
other dispatch data and statistics (e.g. total run time, data
structuring, etc.).

After computing the economic dispatch, some adjustments
are applied to account for transmission losses by simulating
the actual energy required to cover the ordinary demand plus
the network losses. With the simulation of the network power
flow, it is possible to extract a close-to-real loss value and
make it accountable on top of the actual load consumption
from the network. Considering the updated network losses, the
production level of the slack generator is adjusted to account
for these more accurate values, ensuring that the system’s
power balance reflects a closer-to-reality representation of its
operation. It also considers a stoppage criterion to address
previous constraint violations.

III. KEY PERFORMANCE INDICATORS

The goal of the KPIs is to assess the quality and relevance
of these synthetic data generated for integration with other
third-party power system simulations. They evaluate the data
in two possible scenarios: a) Load and non-conventional
generation, which make use of reference diagrams (con-
sumption/generation) from three locations in France [16],
using data from Renewable Ninja [18]; b) All data (full
dispatch), which makes use of reference diagrams (consump-
tion/generation) from three France locations, using data from



Réseau de Transport d’Électricité (RTE), directly included in
Chronix2Grid reference data [19]. This approach uses these
real data sources as references to compare the generated data
directly. While some results are quantitative, others are purely
observational/qualitative. The main analysis is processed dif-
ferently, depending on the data and respective KPI.

1) Conventional generation dispatch: Simplistic analysis of
the overall dispatch arrangement and the respective individual
amount for each type. For that, a distribution comparison is
established between the generated and reference data, which
is shown in a pie chart.

2) Solar and wind power generation: Verifies if the gener-
ated data has the same aggregated distribution as the provided
reference data. The synthetic solar data are also verified to
check if none is present during the night. In order to com-
pare distributions two indicators are used: Kullback-Leibler
Divergence (KL Divergence) and Jensen-Shannon Divergence
(JS Divergence), see Eq. 11 and Eq. 12. The KL Divergence
is useful for understanding how the synthetic data captures
the reference data’s key characteristics, and the JS Divergence
comprehends symmetric comparisons and also captures the
interpretability.

DKL(P ∥ Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(11)

where P and Q represent the reference and synthetic sets,
respectively. Here, a smaller value indicates that the synthetic
data closely resembles the reference data. It should be noted
that KL Divergence is asymmetric, meaning DKL(P ∥ Q) ̸=
DKL(Q ∥ P ).

DJS(P ∥ Q) =
1

2
DKL(P ∥ M) +

1

2
DKL(Q ∥ M) (12)

where M = 1
2 (P + Q) is the average or midpoint distri-

bution. This metric checks how similar the two distributions
are by comparing them to their average distribution M . The
result is bounded between 0 (identical distributions) and 1
(maximally different distributions).

For these two types of generation, the Pearson correlations
between generators are also calculated to evaluate the diversity
and spatial dependency structure between the time series data.

3) Electrical energy consumption: Comparison of normal-
ized total load by each week and hour of the year, where
Lnorm = L

Lmax
. With these values, the Mean Absolute Error

(MAE) is computed, and since the values are normalized,
it gives a percentage similarity error estimate between the
reference and synthetic series.

IV. VALIDATION OF THE SCENARIOS

To validate the generated scenarios, the network and other
specifications from the l2rpn_idf_2023 environment of
the Grid2Op is selected, which was used in the Paris Re-
gion AI Challenge for Energy Transition [20]. It includes an
adapted version of the IEEE 118 grid with high renewable
penetration representing the target electrical mix reached by
2035 in France; the generated data (one year) is compared

with reference 2012 data. The comparison with 2012 data
serves only as an example to highlight differences in the
mix KPI. All other KPI primarily focus on distribution’s
analysis to assess the quality of the generated data. Therefore,
the choice of reference year should not be impactful, as
we are not comparing the same networks, and both input
and reference data are adjustable. For this use-case scenario,
all parameters remain set to their default values within this
specific environment [16].

A. Conventional Generation Dispatch

In this specific example, the proportion of nuclear gener-
ation is below the one found in the reference data, but it
shows that the synthetic mix would retrieve a different (but
optimal) dispatch value when compared to the reference data,
as depicted in Fig. 2. Following French energy goals for
2050 [21], where the goal is to surpass 50% of nuclear, this
generation structures the distribution of global generation for
roughly 50% of nuclear generation. The final dispatch data for
the provided period is shown in Fig. 3.

Fig. 2. Reference vs. Synthetic Energy Mix

Fig. 3. Generators synthetic data for one year (one color per gen.)



For a closer look, see Fig. 4 for a random one week
snapshot of the generated data for aggregated electric energy
consumption, solar and wind generators.

Fig. 4. Synthetic Electric Energy Consumption vs. Solar and Wind Generation
- One Week Snapshot

B. Solar and Wind Power Generation

For this specific use case, Fig. 5 shows that the overall
distributions are similar (the y-axis is given in frequency
percentage). As for the wind generators, Fig. 6 shows that
the synthetic data is smoother, more symmetrical, and less
variable (the y-axis is given in frequency percentage).

The results in Table IV-B indicate the degree of similarity
between synthetic and reference distributions for solar and
wind data. For the solar dataset, both KL and JS Divergences
are low, suggesting a strong similarity between the synthetic
and reference distributions. When zero values are excluded
from the solar datasets, both KL and JS divergences increase,
indicating that the synthetic data deviates slightly from the
reference distribution in non-zero regions but conserves con-
sistency. Both Divergences are slightly higher for the wind
dataset, implying that while consistent, the synthetic data is
less aligned with the reference distribution.

TABLE I
DIVERGENCES FOR SOLAR AND WIND POWER DATA DISTRIBUTIONS

Dataset KL Divergence JS Divergence
Solar 0.027 0.085

Solar w/o zeros 0.204 0.225
Wind 0.683 0.328

(a) (b)

Fig. 5. Distribution of solar production for reference (a) and synthetic (b)
data

(a) (b)

Fig. 6. Distribution of wind power generation for reference (a) and synthetic
(b) data

As for the Pearson’s correlation matrices, the results are
shown in Fig. 7 and Fig. 8, for solar and wind generation,
respectively. Most solar generators show very high correlation
coefficients (0.8 to 1.0), suggesting a strong similarity in their
output patterns. This is consistent with overall real-world and
reference solar data, where generators in similar geographic
locations or under the same environmental conditions tend
to have highly correlated outputs. It should also be noted
that SGen13 shows a decrease in correlation (e.g., 0.4-0.7
with some generators), representing a different profile, or even
simulating environmental diversity such as shading effects,
microclimate variations, or differences in panel orientation.

Fig. 7. Pearson correlation for solar power generators synthetic data

Fig. 8. Pearson correlation for wind power generators synthetic data



Unlike the solar synthetic data, the wind generator cor-
relation matrix (Fig. 8) shows a broader range of values
(from 0 to 0.9), indicating greater diversity in the generated
profiles. This reflects expected behavior, as wind generation
is often influenced by localized wind patterns, terrain, and
turbulence, leading to less uniformity compared to solar
generators. Certain generator clusters (e.g., WGen5–WGen6
and WGen13–WGen14) exhibit moderate to high correlations,
suggesting that these generators share similar environmental
conditions and/or are located within the same wind farm.

C. Electrical Energy Consumption

As shown in Fig. 9, the reference data show a noisier and
less symmetric U-shaped distribution, with a sharper drop
and smaller mid-year values. The synthetic data display a
smoother and more symmetric U-shaped curve, with a gradual
decline to the mid-year trough and consistent recovery towards
the year’s end. The reference data have more pronounced
weekly fluctuations, indicating higher variability, while the
synthetic data appear more averaged. Both capture a similar
overall trend, but the synthetic data offers a more idealized
and uniform representation of the seasonal pattern.

(a) (b)

Fig. 9. Electric energy consumption by hour (a) and week (b) of the year

For these specific scenarios, the results are quite posi-
tive with percentage equivalent MAEhours = 8.19% and
MAEweeks = 7.69%.

V. CONCLUSIONS

In recent years, the release of new datasets, benchmarks,
competitions, and AI-friendly digital environments has signifi-
cantly advanced AI research and development in power system
operations. These initiatives are already catalyzing progress
in applications such as forecasting and grid management, as
exemplified by the L2RPN and GO competitions. This paper
introduced a methodology for generating realistic synthetic op-
erating scenarios using the Grid2Op environment, addressing
challenges such as renewable integration, economic dispatch,
and loss modeling. However, there remains a need for more
diverse datasets and benchmarks, including both large-scale,
open-source synthetic datasets and those incorporating real-
world data. These resources support initiatives like the Euro-
pean Commission’s emerging AI Testing and Experimentation
Facilities.

Future work will compare pattern-based methods with re-
cent advancements in generative AI for time series, evaluating

key properties such as accuracy and computational efficiency,
which are essential for AI-compatible digital environments.
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