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Abstract— The interaction between humans and AI in safety-
critical systems presents a unique set of challenges that remain
partially addressed by existing frameworks. These challenges
stem from the complex interplay of requirements for trans-
parency, trust, and explainability, coupled with the necessity for
robust and safe decision-making. A framework that holistically
integrates human and AI capabilities while addressing these
concerns is notably required, bridging the critical gaps in de-
signing, deploying, and maintaining safe and effective systems.
This paper proposes a holistic conceptual framework for critical
infrastructures by adopting an interdisciplinary approach. It
integrates traditionally distinct fields such as mathematics,
decision theory, computer science, philosophy, psychology, and
cognitive engineering and draws on specialized engineering
domains, particularly energy, mobility, and aeronautics. Its
flexibility is further demonstrated through a case study on
power grid management.

I. INTRODUCTION

Artificial Intelligence (AI) is showing high potential to
transform the management of critical infrastructures [1],
tackling pressing challenges like climate change and the
rising demand for energy and mobility systems while advanc-
ing strategic objectives such as energy transition and digital
transformation. On the other hand, integrating AI in critical
sectors introduces significant challenges, many of which are
already being addressed by emerging regulatory frameworks,
such as the European Union AI Act. These frameworks
emphasize the importance of safety, transparency, and adher-
ence to ethical standards and principles to mitigate a wide
range of risks, including technical, social, and environmental
hazards associated with deploying AI in high-risk domains.
Another key challenge lies in fostering effective human-
AI collaboration. This involves integrating human expertise
into AI-based systems and promoting adaptive learning and
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collaborative decision-making processes. Various approaches
can be explored to achieve this, such as co-learning frame-
works where both AI and humans evolve their knowledge
together or systems in which AI learns independently but is
designed to work alongside humans in joint decision-making.

In response to these challenges, this paper proposes a
conceptual framework for AI-based systems in critical in-
frastructures. This framework integrates emerging AI al-
gorithms, open-source digital environments optimized for
AI, and socio-technical design principles and practices for
responsible research and innovation that support human-
machine interaction. It aims to improve real-time and predic-
tive operations across key sectors such as power networks,
railways, and air traffic management – identified as vital to
Europe and prioritized in national AI strategies worldwide.

Existing decision-making frameworks provide valuable
insights into AI integration but often operate in isolation,
focusing on specific sectors or challenges (see Section II for
a review). There is a need for a unified approach that balances
technical, ethical, and human considerations in critical infras-
tructures. This paper proposes a novel framework that fosters
collaboration between human control and AI, ensuring AI
enhances rather than replaces human decision-making.

Designed with real-world, safety-critical applications in
mind, the proposed framework prioritizes transparency, trust,
and accountability, improving both social and technical per-
formance. By directly addressing key challenges such as reli-
ability, security, and response time in complex environments,
it supports adaptable, ethically aligned, and context-aware
human-AI systems for safer and more effective decision-
making.

A review of existing frameworks is provided in Section II.
The proposed conceptual framework is described in Section
III. An example of its instantiation is provided in Section
IV, and Section V concludes the paper.

II. RELATED WORK

The decision-making processes within critical infrastruc-
tures are increasingly supported by frameworks that integrate
AI to enhance reliability, efficiency, and safety. These frame-
works aim to address the unique challenges of critical sectors
by providing structured approaches to managing complexity
and uncertainty. Herein, we review some of the prominent



frameworks developed for decision-making in the energy and
mobility domains.

a) Decision support systems in power grids: Power
grid evolution driven by decarbonization increases opera-
tional complexity, requiring enhanced control room supervi-
sion. When managing technical problems such as congested
lines, power system engineers rely on specialized exper-
tise, real-time and forecasted data, and simulation tools for
complex decision-making. Yet, they have limited access to
automated decision-support tools, requiring manual explo-
ration and experience-driven simulations to implement grid
adjustments and remedial actions.

Marot et al. [2] propose an AI-based agent framework to
assist power grid operators by ensuring alarms are sent in
advance when action confidence is low, preventing human-
out-of-the-loop scenarios. It emphasizes credibility through
transparency, reliability via consistent performance, and inti-
macy by explaining incorrect actions to build trust. Greitzer
et al. [3] introduce a naturalistic decision-making framework
that models interactions between real-world cues and opera-
tor cognition using mental simulations to anticipate control
actions.

Fan et al. [4] propose a human-machine hybrid intelligence
framework for power grid dispatching, integrating AI, a digi-
tal twin, and human operators to enable bidirectional learning
and dynamic task reassignment. Hilliard et al. [5] develop
the Work Domain Analysis framework, linking grid assets
to high-level objectives through means-ends relationships
and cause-effect models. Finally, GridOptions [6] is the first
AI-based decision-support tool deployed in a Transmission
System Operator (TSO) control room, applying Evaluative
AI [7] to enhance decision-making through quality-diversity
multi-objective optimization. That is, by providing evidence
for and against a range of possible options (instead of
providing recommendations that can only be accepted or
rejected), it leverages human expertise in decision-making
and mitigates issues of over and under-reliance.

b) Railway traffic management systems: The traffic
management in modern railway networks is becoming ever
more complex due to dense mixed traffic and increasing
passenger and freight demand. Rescheduling and rerouting
trains present a significant challenge when deviations from
the planned schedule occur, such as delays or infrastructure
disruptions. While these tasks are traditionally performed by
human operators, they receive support from traffic manage-
ment systems (TMS) with various degrees of automation,
like the Swiss Federal Railway’s (SBB) Rail Control System
(RCS) [8] which provides real-time traffic monitoring and
dynamic routing options.

While traditional TMS in the railway sector rely heavily
on operations research, there is growing interest in leverag-
ing machine learning, particularly multi-agent reinforcement
learning (MARL), for traffic management. Efforts in this area
range from enhancing solution quality and response times for
dynamic routing—such as in German Railway’s (DB) auto-
matic dispatching assistant—to exploring novel rescheduling
and rerouting approaches using MARL [9] within simulation

environments like Flatland [10]. Additionally, recent public
and private open-source research initiatives in the railway
sector continue to drive innovation in TMS [11], [12], [13].

c) Air Traffic Management (ATM) systems: ATM con-
sists of several entities that all need to work together
seamlessly to achieve safe and efficient air traffic opera-
tions. Those entities operate at different time scales, ranging
from long-term strategic flight planning (years to months
prior to operation), pre-tactical operations (days to hours
before operation) towards tactical operations in the execution
phase of flight. Currently, the ATM system is human-centric,
meaning that human operators (ranging from strategic flight
planners toward tactical air traffic controllers (ATCOs) bear
the ultimate responsibility for operational safety.

The steady growth of air traffic, projected at 2% annually,
has exposed a gap between future demand and the capacity
of current ATM infrastructure [14]. To address this, the ATM
community is increasingly adopting automated support tools.
While airspace capacity is geometrically linked to minimum
safety separation distances [15], its primary constraint is
the ability of ATCOs to monitor airspace on the day of
operations (O-Day) [15]. Since airspace capacity depends on
the sustainable workload of ATCOs, the key challenge lies
in scaling their availability to match traffic growth, making
training and certification efforts crucial.

Beyond decision-support tools aimed at reducing ATCO
workload (e.g., [16], [17], [18]), another approach focuses
on Air Traffic Flow and Capacity Management (ATFCM)
at the strategic level, up to seven days before O-Day. This
allows human operators ample time to review automated
recommendations. ATFCM involves optimizing flight distri-
bution and ATCO assignments to balance workload. Martin
et al. [19] proposed using adjacent unused sectors to increase
capacity, while other studies address strategic deconfliction
by minimizing predicted conflicts through trajectory planning
[20]. Additionally, research explores dynamic airspace sector
structures, using heuristic and learning-based methods to
optimize workload distribution among controllers [21], [22].

d) Socio-technical systems and Human-AI interaction:
Frameworks that address the socio-technical aspects of
decision-making are gaining prominence. As an example,
the Joint Control Framework focuses on the shared decision-
making process between humans and AI-based systems [23].
It outlines strategies for co-learning and adaptive control,
ensuring that human expertise is integrated into AI-driven
decisions, particularly in critical scenarios where full au-
tomation may not be feasible.

e) Trustworthy AI frameworks: Trust is a cornerstone of
decision-making frameworks in critical infrastructures. The
Confiance.AI framework [24] and the Human AI Ethical
Framework [25] emphasize the development of AI-based
systems that are not only effective but also transparent,
ethical, and aligned with human values in order to be
deemed trustworthy. These frameworks provide guidelines
for ensuring that AI-based decision systems are trustworthy
and capable of supporting decisions in critical environments.
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Fig. 1: The proposed conceptual framework, comprising
three main components governed by system design principles
and their corresponding sections

f) Risk management and regulations: The Assessment
List for Trustworthy Artificial Intelligence (ALTAI) and the
regulatory provisions of the AI Act by the European Union
offer frameworks for assessing and managing risks associated
with AI-based systems in critical infrastructures [26]. These
frameworks provide a structured approach for evaluating the
ethical and functional aspects of AI, ensuring that decision-
making processes meet stringent safety and accountability
standards. Nonetheless, these frameworks focus mainly on
assessment of safety and trustworthy aspects of AI-systems
and further specialization for critical systems is still required.

This work complements existing CPHS modeling ap-
proaches [27], including SysML-based architectures and
agent-based models, by offering a cross-disciplinary concep-
tual foundation that incorporates cognitive and ethical dimen-
sions often absent from formal system design frameworks.

III. PROPOSED CONCEPTUAL FRAMEWORK

A high-level overview of the proposed conceptual frame-
work for critical infrastructures is illustrated in Figure 1,
which also outlines the structure of this section. We adopt
an interdisciplinary approach to develop the conceptual
framework for critical infrastructures by integrating different
fields such as psychology, philosophy, ethics and cognitive
engineering. The framework also drew on mathematics, de-
cision theory, computer science, and specialized engineering
domains, particularly energy and mobility.

The systems engineering and theories are adapted for
trustworthy AI integration in designing the conceptual frame-
work’s operational, functional, and logical architectures to
meet both functional and non-functional requirements of
critical infrastructures. Based on the observed context and
decision environment, the decision-making process is re-
sponsible for ensuring the stability and resilience of the
corresponding critical infrastructure. The decisions may re-
sult from collaboration between human operators and AI-
based assistants through a provided interface. Furthermore,
the decisions must comply with established trustworthy key
performance indicators (KPIs) and undergo validation by
a regulatory authority. The subsequent sections provide a
detailed explanation of each component of the framework.

A. Conceptual Framework Methodology and System Design

Systems engineering principles and theories provide a
structured approach to designing the proposed conceptual
framework for decision-making in critical infrastructures
by integrating interdisciplinary methodologies, risk manage-
ment strategies, and regulatory compliance mechanisms. To
achieve this, we adopted a model-based systems engineering
approach using the ARCADIA method [28], introducing the
following analyses and views.

a) Operational view: The operational view answers
the question: “What external elements interact with the
system, and how do they influence it?” and focuses on how
the system functions in real-world scenarios, emphasizing
interactions with stakeholders such as operators, regulatory
agents, and supervisors. The operational environment dia-
gram in Figure 2 visually represents these external entities,
conditions, and interactions that influence the system. It
helps define the system boundaries, showing how the sys-
tem interacts with its environment, including users, other
systems, hardware, software, and external constraints such
as regulations or physical conditions. These stakeholders
ensure the system’s secure and efficient operation, aided by
tools like simulators and AI-based assistants supported by
data profiles that enhance decision-making and compliance.
The framework is designed to handle various operational
contexts, integrating human-in-the-loop mechanisms for col-
laborative decision-making between human operators and
AI-based systems.

Conceptual

framework
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Environment Infrastructure 
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Fig. 2: Operational environment diagram. External entities,
interactions, and contexts in which a system operates

b) Functional view: The functional view answers the
question: “How does the system achieve its objectives?”.
Thereby, it defines the system functions and shows how
system components process inputs, produce outputs, and
interact. The functional view outlines eight key functions,
which are shown in Figure 3 along with their interactions and
information flow. It involves determining real-time context
by analyzing both internal (simulator) and external (environ-
ment) data, anticipating future events to proactively address
potential issues, and interacting with the operator to facili-
tate communication and support. It also includes obtaining
feedback from the operator on the provided assistance, select-
ing human-AI interaction modes to customize collaboration,
learning from the operator’s actions to enhance the system’s
knowledge base, assisting with decision-making, ensuring
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compliance with regulations to maintain trustworthiness, and
continuously monitoring AI behavior to detect and respond
to anomalies.

Identifying the different contextual and interaction sce-
narios ensures the system responds efficiently to contextual
changes, supports informed decision-making, and upholds
regulatory standards. The seamless flow of information be-
tween these functions and external entities promotes contin-
uous learning and robust performance, ensuring the system
remains resilient and effective in real-world scenarios.

c) Logical view: The logical view answers the question:
“How are the system’s functions structured as components
and how do they interact logically?” and provides an ab-
stract structure for integrating the identified core functions,
focusing on seamless interaction among subsystems and
stakeholders identified in the previous views. This view
forms the foundation for designing the whole decision-
making process, as illustrated in Figure 4. As depicted in
this figure, the logical view of the conceptual framework
provides a structure integrating five key components and
their interactions. The decision environment provides context
information to both human and AI-based agents, which
process this data internally and enhance their capabilities
through an interactive interface. The AI’s behavior is contin-
uously monitored and evaluated based on properties relevant
to the decision-maker’s perspective, ensuring it effectively
supports the decision-making. To uphold trustworthiness in
the final decision, a regulatory officer assesses compliance
with established standards. A more detailed explanation of
these diagrams is provided in Section III-C.

B. Context and Decision Environment

Decision-making in critical network infrastructures is a
complex process influenced by external events, such as dis-
ruptions or emergencies, and the constraints of network ca-
pacity. These decisions involve multiple stakeholders across
various time horizons and must balance trade-offs between
conflicting objectives under tight time constraints. They are
critical because these infrastructures underpin vital societal
functions, including safety, health, and economic stability.
The decision-making is triggered by detected events and
involves iterative interactions between human operators and
AI-based systems, blending manual and autonomous actions.

Preventive and corrective measures are selected within a
large action space, often in real-time, to ensure infrastructure
resilience.

Analysis across three domains—railways, air traffic, and
electricity—reveals that while decision contexts vary due to
domain-specific factors, there is significant similarity in de-
cision characteristics and evaluation criteria, such as trust in
AI-based systems and assistant relevance. However, impacts
remain largely domain-specific, reflecting unique operational
priorities. Multi-domain studies highlight shared method-
ologies and potential for collaboration, with the strongest
similarity observed between railway and air traffic domains.
These insights emphasize the importance of cross-domain
approaches in enhancing the effectiveness and robustness of
decision-making processes in critical network infrastructures.

C. Decision-making Process

The decision-making process in critical systems involves
a dynamic interplay between human expertise, AI-based
decision-making capabilities, and their collaborative inter-
action. This section explores three key dimensions: human
decision-making, which leverages domain knowledge and
intuition; AI-based decision-making, which provides data-
driven insights and scalability; and human-AI interaction,
which integrates these strengths to optimize decisions under
complex and uncertain conditions.

1) Human decision-making: As illustrated in Figure 4a,
monitoring the operational process through AI support is es-
sential for human to understand the situation and to develop
adequate situation awareness [29], which further increases
the human cognitive process [30]. The overarching goal
is to continuously improve the human agent’s knowledge
required for decision-making, which is represented as mental
models of the environment (system and control knowledge),
the AI (knowledge about capabilities and limitations of AI-
based assistant), the self (awareness of their own strengths
and weaknesses), and the human-human collaboration (in-
terrelations between decisions taken by individuals). The AI
could support human learning by enhancing these domains
of knowledge.

The AI support is enabled through the Human Machine
Interface (HMI) in four different ways: transparency (pro-
vides interpretable and explainable assistance), exploration
(enables the humans to explore/learn a subject matter),
animation (requires the human to reflect or contribute),
and mirroring (AI mirrors individualized patterns in human
behavior to make the human aware of own biases and
variabilities in decision-making). It is crucial that the col-
laboration between humans and AI is deliberately designed
and continuously improved in such a way that it supports
human learning processes and promotes human motivation
rather than overwhelming them.

2) AI-based decision-making: As can be seen in
Figure 4b, the AI agent—leveraging various learning
paradigms such as knowledge-assisted AI, co-learning,
multi-objective reinforcement learning, and meta-awareness
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Fig. 4: Decision-making process (logical view) in critical network infrastructure operations presented from human (left)
and AI (right) agents perspectives. The AI-based agent increases the human agent’s cognitive processes through mirroring,
transparency, exploration, and animation. Its performance is also monitored through various properties (e.g., robustness,
generalization, scalability, etc.). The human agent, in turn, provides feedback to the AI-based agent, enabling its continuous
improvement. The final decision is verified by a regulatory agent through trustworthy KPIs.

for AI assistant—supports the human operator by deter-
mining the decision context within its complex underlying
space in near real-time. Additionally, it enhances situation
awareness by anticipating future events and providing recom-
mendations. To ensure adaptability and continuous learning,
the AI assistant must incorporate human feedback into its
learning strategy and decision-making processes.

AI-based decision-making in safety-critical systems must
also adhere to strict domain and regulatory standards to
ensure safe operation and compliance. These key require-
ments ensure the AI system can intervene immediately and
effectively to maintain the system’s normal operational state,
even in the face of unexpected critical situations. Among
these, generalization [31] and scalability [32] are essential
to adapt to varying conditions and handle diverse operational
scenarios. Furthermore, to ensure consistent performance
across different circumstances, robustness [33] and relia-
bility [34], as outlined in the trustworthiness vocabulary
standard (ISO/IEC TS 5723:2022), are indispensable con-
siderations. Finally, the AI system must be designed to
prevent, respond to, and recover from adversarial attacks,
emphasizing the importance of resilience. Integrating these
concepts during training and testing is crucial for the safe,
reliable, and lawful operation of critical systems.

In human-AI decision-making, AI-based systems can aug-
ment human judgment with data-driven recommendations,
enhancing efficiency and reducing bias. AI agents could also
learn from human feedback and improve their recommen-
dations. However, this synergy introduces new challenges
in AI-based decision-making, requiring the AI to include
additional characteristics: a) traceability and auditability to
ensure the alignment between requirements and the product
developed, and with the desired objectives and standards
correspondingly; b) uncertainty quantification to characterize
uncertainties in AI models and real-world data, enabling
humans to be aware of the limitations of the AI system; and,
c) provide transparency when interfacing with the human

operator to understand the long-term impact of a certain
decision [35].

3) Human-AI interaction: As a result of the logical anal-
ysis in the system engineering phase, HMI of the conceptual
framework (see Figure 4) incorporates three distinct forms
of interaction between human and AI-based agents, each
representing a different level of collaboration and autonomy
as described below:

• AI-assisted full human control: AI offers high levels
of automation in information acquisition, information
integration, and possibly decision selection. Action im-
plementation is fully allocated to the human operator. A
practical example is where AI directs humans’ attention
to important system information, integrates it in intuitive
and human-friendly ways, and offers (a set of) directions
where good decisions should be made;

Assistant

• Joint human-AI decision-making: AI and the human
operator can both independently and autonomously
observe information, make decisions, and undertake
actions. In this configuration, bi-directional human-AI
communication is required to ensure that both agents
are aware of who is doing what, when, and how. A
practical example is where the AI and human operator
are working in parallel on completing a control task and,
by observing each other’s behavior, can learn from each
other. For co-learning, it may be necessary to consider
lower levels of automation at the action implementation
stage, where the AI provides specific advisories that the
human can accept, reject, or modify. Furthermore, AI
can go beyond the provision of recommendations and
thereby explicitly support human cognitive processes



of decision-making, learning, and motivation. This for
instance by supporting humans in exploring their envi-
ronment so that they learn to recognize weak signals for
emerging problems and corresponding leverage points;

Self-learn

& Reflect

• Full AI-based control: AI provides fully autonomous
primitives that represent simple, intuitively understand-
able functionalities for human operators [36]. The hu-
man operator orchestrates these autonomous primitives
to accomplish specific tasks. Ideally, operators do not
need to intervene in these black-box primitives. How-
ever, in the event of system faults, the human-AI system
must be able to fall back to lower levels of automation,
allowing human intervention with the finest granularity
of control.

Self-learn

It is important to note that choosing the right levels and
stages of automation is warranted by operational contexts,
situational demands, and capabilities (and limitations) of
human and automated agents. As such, a “one-size-fits-all”
distribution of functions and tasks does not exist and will
need to be re-considered per application domain and/or
operational scenarios. Noteworthily, regulatory demands
for critical systems include specific objectives on the
levels of human autonomy and oversight. The effectiveness
of each interaction mode can be assessed using both
quantitative and qualitative KPIs, tailored to the system’s
criticality. Key indicators include AI acceptability, trust, user
experience, sociotechnical decision quality, and AI-human
task allocation balance.

Hypervision As infrastructure dynamics become more
complex—such as with the energy transition in electric
transmission systems—traditional supervision tools struggle
to handle the growing volume of information. Managing
multiple screens and applications places a cognitive burden
on users, requiring them to manually prioritize and link
disparate data before making decisions. The HMI module of
the proposed framework integrates hypervision (see Figure
4), which synthesizes key information and centralizes real-
time business events into a unified interface. This enhances
decision-making and task prioritization by shifting the focus
from alarm monitoring to efficient task execution [37], [38].

D. Philosophical Foundations of Trustworthy AI

The collaborative process between the human operator and
AI-based agent (see Figure 4) raises a discussion on the

philosophical foundations of Trustworthy AI (TAI). Debates
persist regarding the feasibility and conceptual legitimacy
of attributing trustworthiness to AI [39], given its lack of
intrinsic motivations and moral obligations. These criticisms
are addressed by reframing TAI’s ethical dimensions as
compliance with specific ethical requirements rather than
interpersonal trust analogies [40]. This discussion is impor-
tant not only for philosophical reasons but to provide the
foundations of a systematic approach to risk assessment in
AI-based systems, especially those used in safety-critical
domains.

To address AI-related risks and uncertainties, the proposed
framework incorporates a process for deriving ethically-
aware functional and non-functional requirements and corre-
sponding metrics and KPIs. This process adapts the European
Commission’s ALTAI tool [26] to be used for ex-ante analy-
sis of the AI system at different stages of the development cy-
cle. It is complemented by a risk management approach that
adapts the multi-component risk analysis commonly used
in natural disaster management [41] to AI-related risks and
technological contexts [42]. This approach enables targeted
interventions to mitigate risks through hazard reduction,
exposure limitation, and decreasing vulnerability. The ALTAI
framework, adapted for safety-critical applications, provides
proactive guidelines across dimensions such as human over-
sight, technical robustness, societal well-being, and account-
ability. By reinterpreting ALTAI’s self-assessment questions
into actionable design-phase requirements, this framework
fosters active responsibility, ensuring systems are technically
sound and ethically aligned, minimizing risks like over-
reliance and de-skilling in human-AI interactions.

IV. CASE STUDY: POWER GRID MANAGEMENT

To demonstrate the effectiveness and domain-agnostic
nature of the proposed framework, we apply it to the existing
GridOptions framework [6], which is currently used for
decision support in a TSO control room.

a) System design: At this stage, we analyze the func-
tionalities of GridOptions framework, identify its limitations,
and provide insights into how it can be enhanced through
the proposed framework architecture, emphasizing the need
for stronger human-AI interaction. For that purpose, Figure
5 projects the GridOptions tool on the proposed conceptual
framework by indicating both functionalities already present
(orange) and functionalities not yet available (blue) in the
tool.

b) Context and decision environment: Line congestion
poses a significant risk to power grid operation, as it can
trigger cascading failures that may ultimately result in a
large-scale blackout. The TSO is tasked with managing con-
gestion on the transmission grid, which is characterized by
extensive action and observation spaces due to the system’s
size. This management process involves sequential decisions
across various time horizons, uncertainty (e.g., from weather-
dependent generation sources such as renewables or measure-
ment errors), behavioral diversity, and the pursuit of multiple
objectives [43]. Control centers provide groups of human
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Fig. 5: Conceptual framework instantiation for GridOptions.
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operators with the necessary working and decision-making
environment to remotely monitor the system and properly
operate it in real time [38]. However, deploying AI-based
decision support tools in TSO control rooms is still in its
infancy.

The GridOptions tool represents one of the first AI-based
decision support tools that is deployed in a control room
[6]. It recommends to operators remedial actions to prevent
congestion in the intraday timeframe (i.e., within a 24-hour
forecast horizon). However, the scope of the first version
of the GridOptions tool has been limited to enable fast
development and release cycles. Consequently, the decision-
making context can be enlarged in several ways. For exam-
ple, increasing the geographical scope and adding other kinds
of remedial actions can still vastly increase the observation
and action spaces. This directly relates to the issues of
scalability and generalization (sec. III-C.2). Moreover, the
GridOptions tool currently represents a standalone tool with
a simple user interface. In the future, the tool needs to be
integrated with several other decision support functionalities
in the control room, and it needs to integrate several different
time horizons (e.g., from operation planning to real-time).
This directly relates to the issues of information overload
and hypervision (see sec. III-C.3).

c) Decision-making: Regarding the human agent, the
question is how far AI-based decision support enhances
crucial human cognitive processes (decision-making, con-
tinuous learning, appropriate trust, intrinsic motivation) via
AI model capabilities (transparency, exploration, animation,
and mirroring) (sec. III-C.1). Currently, the GridOptions tool
mainly aims to support human cognitive decision-making
processes. On top of monitoring and situation awareness sup-
port tools, which are commonly available in power system
control rooms, the GridOptions tool offers operators a set
of different plans to mitigate congestion. In contrast, the
cognitive processes of learning, trust, and intrinsic motivation

are not directly addressed in the current version of the
GridOptions tool. Hence, there are still several directions in
which the GridOptions tool could be improved. For example,
enabling the operator to explore their own assumptions and
plans (i.e., the operator can insert self-generated remedial
actions and compare those with recommended remedial
actions) and causal relations in the environment can support
both continuous learning and intrinsic motivation. Moreover,
animation capabilities in the form of alerts (e.g., when previ-
ously unseen remedial actions are recommended), questions
(e.g., whether recommended remedial actions are consistent
with the operators’ background knowledge), and mirroring
(reflecting the operator’s decision-making style), can support
learning and motivation.

Regarding AI-based decision-making (sec. III-C.2), the
GridOptions tool employs multi-objective quality-diversity
optimization, which enables the generation of a set of plans
that satisfy different trade-offs between various objectives
and are behaviourally diverse. The considered objectives
are related to both infrastructure security constraints and
the complexity of the plans. Presenting the advantages and
disadvantages of the different plans in an easily comparable
fashion fosters AI explainability.

However, a broad range of improvements are still possible
or even necessary. For example, uncertainty quantification,
robustness, and reliability quantification are still needed both
for rigorous AI model assessment and for enabling adequate
human trust. Moreover, learning paradigms like co-learning
and meta-awareness still need to be developed to enable
smooth and effective human-AI collaboration.

Finally, regarding the human-AI interaction, the GridOp-
tions tool only offers the AI-assisted full human control mode
of interaction (see sec. III-C.3). Before the introduction of
the GridOptions tool, operators were fully in control of action
suggestions and action implementation. The introduction of
AI-based decision support tooling needs to proceed incre-
mentally to enable learning and trust and thus assure moti-
vation on the human agent side (see sec. III-C.1). Only after
the current version of the GridOptions tool has sufficiently
demonstrated reliability, robustness, and explainability (see
sec. III-C.2) more advanced modes of interaction can be
explored. For that to happen, more research is needed, such
as how co-learning and smooth feedback cycles can be made
possible.

d) Trustworthiness assessment: For GridOptions, many
of these advancements are still in the early stages and
require further research and development. We are actively
monitoring the evolving EU AI Act and a fundamental first
step in this process is conducting a comprehensive risk
assessment to evaluate potential hazards, vulnerabilities, and
compliance requirements. This will be essential to secure
long-term operational integration while increasing trust in
AI-based systems.

V. CONCLUSIONS

This paper presents a conceptual and technology-agnostic
framework developed through a collaborative effort between



academia and industry, including operators from three dis-
tinct critical infrastructures. Designed to integrate AI into
decision-making processes, the framework ensures a bal-
anced approach between automation and human oversight. It
fosters effective human-AI collaboration through an iterative
joint-learning process, enabling operators to continuously re-
fine AI behavior and enhance decision-making. Furthermore,
it supports real-time operations by using integrated data and
predictive analytics, enabling both proactive and corrective
interventions across different levels of automation.

Beyond the technical aspects, this work advocates for
focusing not only on individual AI models but also on jointly
designing and optimizing the broader socio-technical system
in which AI operates. Successful adoption of emerging tech-
nologies depends on an interdisciplinary approach, shifting
from isolated decision-making to collaborative human-AI
interaction. Insights from disciplines such as philosophy,
ethics, and cognitive engineering help ensure that AI-based
systems are developed and deployed with a deep understand-
ing of their operational and societal contexts.
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