Energy and Al 23 (2026) 100672

Contents lists available at ScienceDirect

ENERGY

Energy and Al Al

journal homepage: www.elsevier.com/locate/egyai

L))

Check for

Evolving power system operator rules for real-time congestion management |

Ferinar Moaidi »"®-", Ricardo J. Bessa"

2 Faculty of Engineering of the University of Porto (FEUP), Campus da FEUP, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
b Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Campus da FEUP, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal

HIGHLIGHTS

New genetic network programming vari-
ant that learns from data via reinforce-
ment learning.

Hybrid graph and decision tree method
provides clear decision logic and inter-
pretability.

Time-efficient and scalable to large power
grids with contingency scenarios and
renewables.

Outperforms expert systems and deep
reinforcement learning agents on the
IEEE 118-bus system.

GRAPHICAL ABSTRACT

Genetic network program (GNP)

a; az
ZBestrule

@

Expert system rule

Initializing Al agent with

modified versions of the
expert decision graph

Rule accumulation

Accumulating optimized rules
through following the trajectory of
actions (ay,ay,..,a,) selected per
grid sate (s, 5y,.., Sp) by elite graphs

Rule Extraction by
Decision Tree (DT)

@

NpuT i PRDICTION
GNP will extract the best-evolved DATA - [pecstchl] -
(elite) decision graph per episode gg ?

v
Grid20p
Environment
Reinforcement learning (RL)

uw’

ARTICLE INFO

Dataset link: GitHub repository of the AI4REAL
NET European project

Keywords:

Congestion management
Expert systems

Genetic network programming
Interpretability
Reinforcement learning
Remedial actions

ABSTRACT

The growing integration of renewable energy sources and the widespread electrification of the energy demand
have significantly reduced the capacity margin of the electrical grid. This demands a more flexible approach to
grid operation, for instance, combining real-time topology optimization and redispatching. Traditional expert-
driven decision-making rules may become insufficient to manage the increasing complexity of real-time grid
operations and derive remedial actions under the N-1 contingency. This work proposes a novel hybrid Al
framework for power grid topology control that integrates genetic network programming (GNP), reinforcement
learning, and decision trees. A new variant of GNP is introduced that is capable of evolving the decision-making
rules by learning from data in a reinforcement learning framework. The graph-based evolutionary structure
of GNP and decision trees enables transparent, traceable reasoning. The proposed method outperforms both a
baseline expert system and a state-of-the-art deep reinforcement learning agent on the IEEE 118-bus system,
achieving up to an 28% improvement in a key performance metric used in the Learning to Run a Power
Network (L2RPN) competition.

1. Introduction

Real-time congestion management in transmission networks, partic-
ularly under contingency scenarios, is becoming increasingly complex

due to a convergence of emerging challenges such as the variability and
uncertainty of renewable energy sources (RES), the rising frequency
and intensity of extreme weather events, and the increasing risk of
cyberattacks on critical infrastructures. In this demanding context,

* Corresponding author at: Institute for Systems and Computer Engineering, Technology and Science (INESC TEC), Campus da FEUP, Rua Dr. Roberto Frias,

Porto, 4200-465, Portugal.

E-mail addresses: ferinar.moaidi@inesctec.pt (F. Moaidi), ricardo.j.bessa@inesctec.pt (R.J. Bessa).

https://doi.org/10.1016/j.egyai.2025.100672

Received 30 June 2025; Received in revised form 29 October 2025; Accepted 21 December 2025

Available online 6 January 2026

2666-5468/© 2026 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/egyai
https://www.elsevier.com/locate/egyai
https://orcid.org/0000-0001-5365-740X
https://orcid.org/0000-0002-3808-0427
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
mailto:ferinar.moaidi@inesctec.pt
mailto:ricardo.j.bessa@inesctec.pt
https://doi.org/10.1016/j.egyai.2025.100672
https://doi.org/10.1016/j.egyai.2025.100672
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyai.2025.100672&domain=pdf
http://creativecommons.org/licenses/by/4.0/

F. Moaidi and R.J. Bessa

control room operators are required to rapidly assess system conditions
and define effective remedial actions to maintain grid stability, prevent
overloads, and mitigate the risk of cascading failures. These remedial
actions may involve generation redispatch, RES curtailment, demand
response, and topological reconfiguration of the network. The large
number of possible action combinations, coupled with the need for
real-time decision-making, makes it extremely challenging to identify
optimal solutions, which often requires the use of approximate or
heuristic methods to support timely and reliable operations [1].

This work builds upon the longstanding concept of expert sys-
tems (ES) in power systems, traditionally rule-based approaches that
integrate expert domain knowledge with physics-based models, and
introduces a data-driven methodology to enhance these systems. Specif-
ically, focusing on the real-time congestion management problem, it
adopts the formalism of Markov decision processes as established in the
Learning to Run a Power Network (L2RPN) competition [2], created
by RTE (the French transmission system operator), and proposes the
augmentation of ES by using reinforcement learning (RL), enabling the
ES to learn and adapt optimal policies from experience and interaction
with the environment.

1.1. Literature review

Early research on network topology control used heuristics to re-
duce congestion. Mazi et al. relied on engineering judgment and sensi-
tivity analysis for switching actions [3]. Bacher and Glavitsch modeled
switching in optimal power flow (OPF) to minimize losses, though
their method primarily focuses on static network snapshots rather
than dynamic system behavior, limiting its adaptability to real-time
operation [4]. Makram et al. introduced a Z-matrix strategy to en-
hance efficiency, but it lacked optimality guarantees and often omitted
voltage constraints [5]. These early efforts, while foundational, were
limited in scalability and real-time applicability, making them less
suited to modern grids that demand dynamic, constraint-aware, and
computationally efficient control strategies. During the 1990s, research
increasingly addressed dynamic aspects of switching strategies. Chen
and Glavitsch, for example, investigated switching actions aimed at
enhancing system stability during emergencies, with a focus on tran-
sient dynamics [6]. While pioneering in considering dynamic response,
their approach lacked integration within a formal OPF framework.
In the early 2000s, optimization-based approaches regained attention.
Granelli et al. [7] applied genetic algorithms for congestion man-
agement with topology reconfiguration under deterministic conditions
(i.e., static load) conditions. However, the method lacked adaptability
and contextual awareness, relying on fixed fitness evaluations without
real-time feedback, limiting performance in dynamic scenarios. A key
advancement came with the formalization of Optimal Transmission
Switching (OTS). Fisher et al. [8] modeled OTS using mixed-integer
programming within a DC-OPF framework, achieving notable cost re-
ductions. Yet, the neglect of AC system characteristics constrained its
practical applicability.

Recent studies have further advanced the topology optimization
action into the OPF problem. Heidarifar et al. [9] proposed a heuristic
method incorporating AC power flow and N-1 contingency constraints
into line switching and bus splitting. While effective, the approach faces
real-time limitations due to the computational burden of contingency
analysis. Zhou et al. addressed the optimization of the grid topology at
the substation level using bus splitting actions, with the aim of reducing
congestion and improving grid efficiency [10]. However, the complex-
ity of substation configurations and high computational demands pose
challenges for real-time deployment. Zhang and Liu developed a mul-
tiperiod OPF model to manage voltage stability and security through
transmission switching [11]. While it provides a comprehensive so-
lution, the method’s real-time application is limited by the need for
extensive computations over multiple periods. Tavakkoli and Amjady
extended the AC-OPF model by incorporating bus-bar switching actions

Energy and Al 23 (2026) 100672

to prevent overload conditions [12]. But its practical use in real-time
is constrained by the intricacy of the overload relay dynamics and the
computational time required. These developments highlight the need
to balance optimization accuracy with computational tractability in
large-scale systems.

In parallel to conventional mathematical optimization, different
groups have explored RL as a promising technique to achieve the
goal of real-time decision making in large-scale and uncertain dynamic
environments [13]. For instance, unlike the classical OPF, which relies
on mathematical programming and model-based optimization, RL of-
fers a data-driven and adaptive approach capable, at inference time,
to recommend remedial actions for a human operator. Building on
these foundations, recent studies seek to enhance the practicality and
robustness of RL in the power system operations context. For instance,
Wang et al. integrated a physics-informed RL framework for AC-OPF
considering future system conditions over a specified time horizon
(e.g., several hours- or day-ahead) [14]. Wu et al. extended this concept
by developing a safe RL method in which the learned policies respect
operational limits during stochastic OPF [15]. Furthermore, RL has also
been used to manage contingencies, (a) Awais proposed deep RL to
handle generator failures [16], while Li et al. combined graph-based
learning with a deep RL model (graph neural network) to capture
the network topology in OPF problems involving renewable genera-
tion [17]. Despite their potential, these approaches often struggle with
convergence, interpretability, and the demand for large-scale training
data.

In 2019, RTE launched the L2RPN (Learning to Run a Power Net-
work) challenge [18], focused on congestion management. The compe-
tition introduced Grid20p [19], an RL environment designed to train
and evaluate control algorithms using realistic grid dynamics and his-
torical data. The challenge evolved in complexity with the introduction
of robustness and adaptability tracks in the NeurIPS 2020 edition. The
robustness track incorporated an adversarial component that simulated
N — 1 contingency scenarios by heuristically disabling transmission
lines [20], thus testing agents’ resilience to sudden network disruptions.
Meanwhile, the adaptability track introduced a higher share of RES,
ranging from 10% to 30%, to evaluate the flexibility and responsiveness
of agents under variable generation conditions [21]. The winning agent
in the NeurIPS 2020 L2RPN competition [22] introduced an action-
set-based policy optimization technique that directly embeds safety
constraints into the learning process — crucial for bridging experimental
success and real-world applicability. Unlike other top submissions that
used standard deep RL methods like Proximal Policy Optimization
(PPO) and Double Deep Q-Network (DDQN), this agent employed
a genetic algorithm for policy optimization. However, a subsequent
analysis [2] showed that no submitted solution fully met the stringent
safety and reliability standards required for deployment in operational
power grids. A notable advancement beyond the L2RPN NeurIPS 2020
and WCCI 2020 agents is the PowRL agent [23], a PPO-based model
designed to manage power networks under variable and adversarial
conditions. While it showed improved resilience and adaptability, its
effectiveness depends heavily on the simulation environment’s fidelity
and reward design. Similarly, CurriculumAgent (CAgent) [24] extended
PPO by integrating an N — 1 reliability strategy and systematically
comparing rule-based and RL-driven topology control. Despite their
promise, such RL models often lack interpretability, limiting trust in
safety-critical grid operations.

These RL-based approaches represent significant progress toward
intelligent data-driven grid management, demonstrating promising per-
formance in tasks such as re-dispatch and topology optimization. How-
ever, they often suffer from two shortcomings. Firstly, the limited
interpretability of the learned policies. These approaches rely heavily
on deep neural networks to approximate value or policy functions, mak-
ing it difficult to trace the rationale behind specific control actions, such
as switching operations or dispatch decisions. For example, in [17],
the agent learns to act based on graph-structured observations, but

F. Moaidi and R.J. Bessa

it provides no explicit explanation of the grid conditions or topolog-
ical features that triggered its decisions. Similarly, in [15], while the
constraints are enforced via a safe-RL framework, the internal deci-
sion pathway remains opaque. Secondly, these methods often require
large amounts of simulated data and prolonged training episodes to
converge, which can be computationally expensive and hinder rapid
adaptation to evolving grid conditions.

1.2. Contributions

Compared to the state-of-the-art, this paper introduces three novel
contributions, which are discussed in detail below:

» Genetic Network Programming (GNP) framework that incorpo-
rates dynamic node behavior, enabling context-aware decision-
making in uncertain power system environments. Unlike conven-
tional approaches that rely on fixed function nodes, this method
employs functional nodes that dynamically adapt their behavior
based on real-time system states.

A hybrid methodology that combines Genetic Network Program-
ming with Decision Tree (GNP-DT), and due to its graph-based
structures, enhances interpretability through providing human-
understandable reasoning for each control action.

This method outperformed both the baseline expert system [25]
and CAgent [24] for the IEEE 118-bus system, achieving up to an
18% improvement in the mean L2RPN performance score and an
80% reduction in inference time.

In this work, a novel variant of GNP is proposed that diverges sig-
nificantly from conventional formulations such as [26], particularly in
its structural design and dynamic node functionality. Traditional GNP
frameworks typically use fixed function nodes and update them in a se-
quential manner, resulting in rigid decision paths that struggle to adapt
in high-dimensional, time-varying environments. In contrast, the pro-
posed GNP architecture features adaptive nodes capable of modifying
their behavior in response to evolving network states and accumulated
experience. This flexibility allows the network to represent more so-
phisticated, state-dependent policies well-suited to the uncertain and
non-linear nature of power systems, such as real-time fluctuations from
RES or non-linearities inherent in AC power flow. Crucially, this design
enables context-aware decision-making. For instance, an overloaded
line may not always trigger the same switching action; instead, the
node selects an appropriate control based on additional context, such
as nearby contingencies, mimicking expert reasoning under diverse
operational scenarios. As training progresses (i.e., learning from data
and experience), these evolving heuristics capture expert-like judg-
ment, resulting in a responsive and interpretable control mechanism
that adapts in real-time to changing grid conditions. Furthermore, the
possibility of seeding at initialization the GNP population with expert-
derived decision graphs (e.g., from a pre-existing ES) can accelerate
convergence in early learning phases by reducing the need for extensive
trial-and-error.

Interpretability is a central contribution of the proposed method,
achieved through the integration of graph-based structures. In par-
ticular: (a) unlike conventional deep RL approaches that operate as
“black-boxes”, the GNP framework structures decision-making within
an explicit graph-based representation. Each node in the graph corre-
sponds to a programmed decision heuristic, allowing the entire policy
to be visualized and traced. This structure makes it possible to un-
derstand the rationale behind specific topology actions at any point
during learning. In contrast, end-to-end deep RL methods, such as those
in [22,24,27], often produce uninterpretable decisions encoded in high-
dimensional neural parameters, limiting reasoning and reducing trust
from grid operators; (b) a multistage decision tree (DT) was employed
to extract human-readable rules from the trajectory of actions created
by top-performing decision graphs in GNP, which were collected into a

Energy and Al 23 (2026) 100672

pool representing high-quality policy behavior. Separate DTs are then
trained to capture key aspects of the control logic. This hierarchical rule
extraction enables modular interpretation, where each stage informs
and constrains the next.

1.3. Structure

The remainder of this paper is organized as follows. The framework
of evolving system operation rules is described in Section 2, where the
proposed Al agent is explained for real-time congestion management.
The setup of the case study and the evaluation approach are detailed
in Section 3. Section 4 provides a comparative discussion of the ex-
perimental results. The interpretability of the proposed framework is
discussed in Section 5. Finally, the conclusions and future work are
included in Section 6.

2. Evolving system operation rules

The proposed methodology targets real-time line congestion man-
agement in power systems. Its core concept involves evolving heuristic
control policies, originally derived from operator expertise or pre-
existing expert systems, encoded as a decision graph (see Section 2.1).

The congestion management task can be modeled as a Markov
decision process [28], defined as a tuple M = (S, A, P, R,y), where:

+ S is the state space. Each state s, € S represents the full state of
the grid at time 7, including power line flows, bus voltages, switch
configurations, and operational constraints of the AC power flow.

» A is the action space. Each action 4, € A corresponds to a con-
trol action, such as line switching (disconnection/reconnection),
bus reconfiguration, bus recovery, or active power flexibility
(e.g., redispatch, RES curtailment, storage system management).

* P(s,y | 5,,a,) is the state transition function, encoding the system
dynamics and physical laws that govern how the grid evolves in
response to actions.

* R(s;.q,) is the reward function, used to evaluate the safety and
effectiveness of each action.

* y €0, 1] is the discount factor.

At each timestep f, the agent observes the system state s, and
selects an action a, according to a pre-defined policy z(a, | s;). The
environment then transits to a new state s,,; based on the dynamics:

Ste1 ~ Pl I spa), ap ~w(a; | s) (€8]

In the original formulation, the RL framework relied on a sparse
binary reward signal to encourage system survival. Let r(s,, a,) denote
the reward received at timestep 7, where s, is the system state and 4, the
action taken. the agent receives a reward of 1 for each successful step
t taken (i.e., system is able to fully meet the electricity demand with
the available generation resources), and a reward of 0 upon reaching a
terminal or gameover state (i.e., when transmission lines exceed their
physical capacity and lead to cascading failure of other lines that ends
with system collapse); this is similar to Grid20p [19] Episode duration
reward:

1, if the agent successfully passes a step
r(s;,a,) = (2)

0, if the agent reaches a gameover state

The RL objective is to find the optimal policy z* that maximizes the
expected cumulative reward over an episode of length T

T

a*=argmax E__, [Z r(s,,a,)]) 3)
r =0

where 7 = (s, 4y, 51, ... , s7) denotes a trajectory under policy z, and the

expectation E__, is over trajectories sampled under the environment

dynamics. As also noted in [2,27], the winning deep reinforcement

learning (deep-RL) agent of the LZRPN WCCI 2020 Challenge adopted

F. Moaidi and R.J. Bessa

the episode-duration reward formulation, reinforcing its validity as a
baseline reward signal for grid control learning tasks. While this formu-
lation encourages robust strategies for prolonging operation, it does not
directly account for operational costs, which were only evaluated post
hoc. To address this limitation, we propose a cost-aware reward that
incorporates a formal operational cost model inspired by the reward
proposed by Grid20p contributors and closely aligned with the L2ZRPN
scoring metric [29]. The per-timestep operational cost is:

Cop(t) = Cdispatch(t) + Chrex(®) + Cosses (1), “4)
with
Cdispatch(t) = Z ¢y (1) py(1),
geg
Chex(®) 1= storage(t) + Ceurtait) + Cother_ﬂex(t)’

Closses(?) 1= cost-per-MWh, ¢ X losses(r),
and G is the set of generators. The blackout (unserved load) cost is:
Chlackout®) = USL(t) X x,, (1) X B,)

with USL(r) the not-supplied load, z,,(7) the marginal price, and g > 1
a penalty factor. The total episode cost is:

T

Cepisode = Z (Cop(t) + Cblackout(t))' (6)
=1

We formally define an upper bound for the episode as the worst-case

cost:

Chax = max
‘worst scenario

T
Z Chlackout®)s (2]
=1
where the worst scenario assumes that the agent fails to supply all
demand at the highest marginal price in each timestep. The normalized
cost-aware reward is then:

Crax — cepisode

cost = C
max

R % 100, ®

so that lower costs produce higher rewards on a 0-100 scale. Survival
is naturally embedded, as blackouts contribute heavily to Cepisode-

The survival-based reward emphasizes robustness alone, whereas
the normalized cost-aware reward jointly captures system reliability
and operational efficiency. The blackout penalties ensure that maintain-
ing supply security remains a primary objective, aligning the reward
with real-world operational goals.

In this work, an undiscounted reward formulation (y = 1) was
adopted to evaluate the cumulative performance of the control policy
over a finite time horizon. This choice is motivated by the need to treat
all future rewards with equal importance, as the objective is to opti-
mize the agent’s performance without biasing toward immediate gains.
Since the task involves an episodic evaluation with a clear termination
criterion, discounting is unnecessary and can introduce an unintended
emphasis on short-term outcomes as explained in [30]. Moreover, the
undiscounted reward simplifies the analysis and interpretation of the
learned policies, ensuring that the optimization process directly targets
the maximization of overall long-term effectiveness.

The learning process, including the evolution of expert knowledge,
is detailed in Section 2.2. Moreover, a rule extraction method that
predicts the best action with respect to evolved knowledge, considering
contextual information, is described in Section 2.3.

2.1. Expert system knowledge representation

The baseline knowledge for this work and also for the GNP rule
evolution in the next section is the ES developed by RTE [25], where
the aim was to emulate the decision-making process of human op-
erators. This ES was enhanced by considering improvements in the
calculation method for determining the influence graph, using more

Energy and Al 23 (2026) 100672

l:l Judgment node

Q Processing node
J2

Dl e
A [X X)

I

[

—

w
3

I
= le—
=
h__h‘
-l
— |e—
'S

12 J

G
o

J10

J15

Fig. 1. ES decision-making graph.

flexibility options (e.g., line switching and redispatch, in addition to the
bus splitting option), new ranking criteria, the possibility of decision
revision, and the possibility of proposing multiple actions rather than
a single action.

The ES is formulated as a network graph for knowledge repre-
sentation, as illustrated in Fig. 1, where ES does not include dashed
connections; these connections represent other reformation of ES used
for initializing the GNP algorithm in Section 2.2. Each judgment node
(J) within this framework is implemented as an individual computer
program, responsible for a specific decision-making task, as detailed in
Table 1.

The sequence of these judgment programs guarantees convergence
to one of the processing nodes: P17, P18, and P19 execute bus-splitting
for hub, loop, and downstream buses, respectively; P20 handles line
switching; P21 activates power flexibility; and P22 implements a re-
covery strategy to the reference topology. This ensures that the system
reaches a unique, executable action path tailored to the grid’s con-
dition. For instance, in a specific case, two congestion events were
detected on lines 20 and 12.

« For line 20: The flexibility nodes identified buses 76 and 81 as
hub buses.

« For line 12: The responsible flexibility group identified buses 67
and 68 as hub buses. In addition, the bus set {67, 80, 79, 78} was
recognized to form a looped path suitable for re-routing.

Since the congested lines were located in different zones, the judgment
node J2, which handles inter-zone coordination, was not activated. In a
specific topological configuration, bus 68 alone was sufficient to solve
both congestion events. Consequently, the rest of the judgment nodes
that contain additional conditional constraints were not activated.

F. Moaidi and R.J. Bessa

Energy and Al 23 (2026) 100672

Table 1
Functions of judgment nodes (J) in the ES decision graph for congestion management.
Node Function Details
J1 Identify and rank congested lines Based on criticality
J2 Skip further analysis Triggered if all issues are within a single critical zone
J3 Explore flexibility — hub bus splitting Key locations enabling power flow rerouting through parallel uncongested paths
J4 Explore flexibility — loop bus splitting Buses that build a local mesh
J5 Explore flexibility - downstream bus splitting Buses that could be supplied from a different path
J6 Explore flexibility — line switching Based on topological search [31]
J7 Explore flexibility — active power flexibility (redispatch, RES Based on sensitivity indices [31]

curtailment, storage management)

J8 Evaluate stop condition Solution quality considering the first threshold
J9 Evaluate stop condition Solution quality considering the second threshold
J10 Evaluate stop condition Number of analyzed issues exceeded a threshold
J11 Recovery Triggered when no valid action proposed
J12 Recovery Triggered when solution quality falls below a threshold
J13 Multi-criteria hierarchical ranking Uses tuple o(a) = (6,,(a), 5,(a), 6,,(@):
o,,(a): Control priority (e.g., switching vs. redispatch)
o,(a): Topological effectiveness (e.g, issue disappeared/alleviated/worsened/created)
o,,(a): Operational score (e.g., sum of squared marginal power flows)
J14 Ranking revision under thresholds Revising the criteria order in J13 per issue
J15 Ranking revision under thresholds Revising the criteria order in J13 after full analysis
J16 Add more actions Uses ranked list if one action is insufficient

2.2. GNP rule evolution

To overcome the limitations of rigid decision-making in traditional
GNP, the proposed method integrates an RL-enhanced GNP framework
that supports dynamic and context-aware behavior. In this approach,
each node is capable of altering its output depending on current grid
conditions, such as line overloads, generation/load levels, or switch-
ing states. For example, a judgment node that initially selects the
reconfiguration action at ‘Bus A in zone 1’ under moderate congestion
may instead recommend reconfiguration at ‘Bus C in zone 3’ if RES
fluctuations create a localized congestion between the two zones. The
node’s behavior is therefore not statically defined, but instead learns
a mapping from state features to decision criteria (e.g., change in
priority of flexible units or threshold of activating a flexible unit),
enabling adaptive control that aligns with requirements for real-time
management. Furthermore, the execution sequence of the decision
graph is not fixed, in contrast to traditional GNP, which follows a
hardcoded node traversal. Instead, the proposed method allows the
policy graph to activate different substructures conditionally, based on
current state inputs. These conditions include the level of congestion,
fault locations, substation configurations, and the recent history of
control actions. The adaptive traversal mechanism in the proposed
GNP supports conditional connections between nodes, especially under
time-varying network constraints.

This structural advancement is depicted in Fig. 2, which compares
the traditional and proposed GNP formulations. On the left, the tradi-
tional GNP follows a linear structure in which each node is associated
with a fixed function, and execution proceeds through a predefined
sequential path, formalized in Eq. (9).

a; = fn,(sr) (C)]

n, = Next(n,),

where n, denotes the node visited at time ¢, Next(n,) is the deterministic
next node pointer, s, is the observed grid state at time ¢, f, is the
decision rule implemented at node n,, and g, is the resulting action
taken by the agent. Each node processes its input and passes control
unconditionally to the next node, regardless of the evolving state of the
grid. The system response is therefore insensitive to diverse operational
contexts, limiting its effectiveness in dynamic environments.

In contrast, the proposed GNP framework (right) organizes the pol-
icy graph into an interconnected network of nodes, each with adaptive
behavior. The nodes evaluate the state vector, which can include the
power flow on the lines, AC power flow constraints, grid topology,
and dynamically determine their output. The graph includes multiple

Traditional GNP Proposed GNP

Adaptive
Behavior

Fixed
Function

Fixed
Function

Fixed
Function

Adaptive
Behavior

State ——»

J19pIQ [ENUanbag paxiy

Fixed
Sequential

Fig. 2. Regular GNP vs. adaptive GNP. The regular GNP employs sequential
node activation, whereas the adaptive GNP dynamically adjusts node behavior
and execution paths based on environmental states.

possible transitions from each node, with links encoding condition-
based execution paths learned through RL. For example, depending
on whether the overload is localized or widespread, a node might
route control to a sub-policy targeting either demand-side response or
topological reconfiguration. The arrows between nodes represent these
conditional transitions, learned from high-performance decision graphs
during training. Node connectivity reflects logical dependencies and
execution flexibility, rather than fixed ordering, as expressed in Eq.
(10).

a,= f,(s) 10

where 7., is a stochastic policy over node transitions, and all other
symbols are as defined previously. The system thus constructs control
policies by composing rule segments that are most relevant under
the current grid state, forming context-specific decision pathways that
align with expert behavior while remaining responsive to uncertainty.
This structural difference is summarized in Table 2. Thus, in contrast
to classic GNP, where node transition probabilities remain static, the
adaptive GNP dynamically adjusts these transitions according to RL
feedback, enabling the decision pathways to evolve in response to
the agent’s performance. In general, the proposed structure enables
the GNP policy to behave as a state-driven control mechanism, ca-
pable of decomposing complex decisions into subgraphs, dynamically

Rupt ~ Tigans(Mrgr | 1 sy),

F. Moaidi and R.J. Bessa

Table 2
Comparison of traditional GNP vs. adaptive GNP execution.

Component Traditional GNP Adaptive GNP
Node execution a, = [, (s) a, = f,,(s))
Node transition n., = Next(n,) Mgy ~ Togans Mgy | 10 8,)

Policy structure Fixed
Graph behavior Deterministic

Conditional (learned)
State-driven

coordinating local actions, and maintaining interpretability for human
operators, as will be shown in Section 5. The interaction between
the GNP evolutionary process and the RL-based adaptive learning is
further illustrated in Fig. 3, which presents a flowchart summarizing
the information flow, feedback loop, and optimization stages within
the proposed GNP-RL collaborative framework. Let G; denote the
ith individual graph in the population, representing a policy y; that
governs decision-making in a Markov decision process with state space
S, action space A, and reward function r : S x A — R. Each graph
consists of judgment nodes and processing nodes; judgment nodes perform
condition-based branching, while processing nodes issue actions q, € A.
During interaction with the environment, a graph follows its encoded
logic to generate trajectories x; = (s, a, g, Sy, ...). During execution,
each node » maintains heuristic parameters 6,, which are updated
based on local feedback from the environment, typically as a function
of the observed state, i.e., 6, < f,(s,). This adaptive mechanism refines
node behavior across generations, supporting the learning dynamics.
The process continues until a failure condition or episode termination
is met. The cumulative reward along z; defines the fitness F of G;, Eq.
(11), which reflects the operational lifespan of the graph under dynamic
grid conditions. This formulation inherently prioritizes policies that
maintain safe grid operation.

T-1
F(G) = Z’t+1 an
1=0
The evolution of the graph population P is governed by Algorithm
1, which integrates crossover and mutation operators as defined in
Algorithm 2. A two-stage crossover mechanism is employed to balance
exploitation and exploration:

1. Exploitation-driven crossover: selects both parents P, P, from
the top-performing 50% of the population to preserve high-
fitness substructures.

2. Exploration-driven crossover: pairs elite individuals (top e; %)
with non-elite ones to introduce novel combinations and main-
tain diversity.

Random selection from a finite set is denoted by x ~ U/(S), where
U represents the uniform distribution over set S. Concatenation of
gene segments is expressed using the symbol ||, while sub-vectors are
denoted by slicing notation, e.g., P[1:x] refers to the first x elements
of parent P, and P[x+1:L] refers to the remaining portion. Individual
candidates Py, P, are removed from their selection pools via set subtrac-
tion, indicated by S \ { P}. The crossover logic uses inline conditional
checks such as random() < cp; to decide probabilistic events directly,
avoiding auxiliary variables. Mutation is applied by modifying a ran-
dom subsequence of each individual with probability m,, constrained
by a maximum range 4,,, - L, where L is the gene length. The mod-
ification could be defined by ignoring/adding conditional constraints,
ignoring/adding a node, decreasing/increasing a threshold, or changing
a criterion. This mutation operates directly on the graph structure by
modifying node logic or interconnections.

After each generation, the elite graph G* is updated by selecting the
graph with the highest fitness — Eq. (12).

* = .
G* =arg g]lg; F(G) 12)

Energy and Al 23 (2026) 100672

A 4
Update Judgment nodes regarding

GNP-RL iter=0
(Rule-counter): i=0
Take individual i: i+1
—> grid state and follow the node

| Initialize population (pop-size) |
]
transition

Is this a
processing node?

Take action with RL environment and
get reward and new grid state

Interaction through episode

Evolution with crossover and mutation:
GNP-RL iter+1

| Population update with replacement |

Fig. 3. Flowchart illustrating the fusion between GNP and RL, showing how
the RL-based feedback updates guide the evolutionary process toward adaptive
and optimal decision graph structures.

The GNP algorithm executes multiple decision-making agents (GNP
graphs) in parallel, each interacting with the environment and col-
lecting diverse experiences. While the entire population contributes to
exploration through varied behaviors, learning and policy updates are
guided by the elite G* graph, identified as the best-performing indi-
vidual based on the cumulative reward. This design enables efficient
reuse of experience across generations and ensures that optimization
is focused on high-quality policies. By decoupling exploration from
exploitation, where population diversity drives exploration and the
elite graph directs learning, the framework achieves both robustness
and adaptability in evolving effective control strategies.

2.3. Decision tree rule extraction

It has been recognized that a single decision graph may not gen-
eralize optimally across diverse grid conditions due to varying fault
locations, network topologies, and intertemporal dependencies. There-
fore, the elite policies of the GNP algorithm are used to build a rule
pool, consisting of the best-performing decision graph for each episode
in the last generation. In particular, the elite graph represents an action
selection trajectory that has the highest possible performance in an
episodic evaluation; this is quite important, since it has optimized the
impact of an action at the present grid condition (present timestep) and
its post-impact in the next time steps. Therefore, elite-derived actions
per timestep will be used to generate labeled datasets (i.e., consisting
of grid state features and the corresponding actions), in which these

F. Moaidi and R.J. Bessa

Energy and Al 23 (2026) 100672

Algorithm 1: Adaptive GNP evolutionary algorithm

Algorithm 2: GNP operators: crossover and mutation

Data: Initial population of size N GNP graphs
(G.G,.....Gx};

Crossover probabilities cp;,cp, € (0, 1);

Mutation probability m, € (0, 1);

Maximum mutation range A,,, € R,;

Total reward R;

Result: Elite graph G* with highest fitness

Initialize population: P = {G|,G,,....Gy};

best_fitness « —oo, G* < None;

while termination condition not met do

1
2

3

4 foreach graph G, € P do

5 R « 0;

6 Initialize RL environment £ at state s;

7 while episode not done do

8 ny < Ngary Of Gy

9 while », is a judgment node do

10 ‘ et < Ty | 1y, 503

11 end

12 if n, is a processing node then

13 a; « fn, (s);

14 Simulate g, in environment: £(s;, ;) = 5;,1;
15 r.41 < reward from &;

16 R« R+r,y;

17 S, Syttt

18 end

19 Update heuristic parameters of node: 6, < f,(s,;);
20 end

21 FG) < Y ry =R

22 if F(G;) > best_fitness then

23 best_fitness < F(G,);

24 G* « copy of G;

25 end

26 end

27 P < GNP_Operators(P,cp;, cp,, mp, Amax)s
28 end

29 return G*

datasets are then used to train a multistage DT to capture different
components of control logic. During training, the agent was initially al-
lowed to explore a broad range of control actions, including redispatch,
curtailment, and storage activation. However, as evolution progressed,
the population of decision graphs consistently converged toward topo-
logical reconfiguration — particularly bus-splitting and line switching
actions — as the dominant and most effective strategy. This behav-
ior aligns with findings from the Learning to Run a Power Network
(L2RPN) competitions framework, which emphasizes that topological
operations are the most direct and cost-efficient means of alleviat-
ing congestion and maintaining grid stability, indicating that power
flexibility actions were less effective, and it may also involve a CO,
emissions increase (e.g., from RES curtailment) and higher operational
cost. For instance, the Binbinchen team (Huawei) [32], which achieved
second place in the L2RPN WCCI 2020 competition, developed a deep
reinforcement learning Actor—Critic agent with PPO that was trained
exclusively on topological actions, restricted to 200 safe configurations
following an expert-guided reduction phase. Similarly, the RTE expert
system [25] focused solely on bus-splitting operations. In particular,
the final analysis of the L2RPN NeurIPS 2020 challenge in the ro-
bustness track [2] challenge demonstrated that several of the toughest
episodes (Jan 28.1, Nov 34.1, Apr 42.2, Oct 21.1) remained feasible
if the agent relied solely on topological actions. These findings justify
the convergence of the agent’s decision-space making onto topology
control, aligning with both real-world operational practice and proven

Data: Population size N; crossover rates cp;,cp, € (0, 1);
mutation rate m,; max mutation span An,;
Subgroups: top_half, elite, non_elite;
Result: New population P,
1 Prew < ;
2 for i « 1 to |top half] do

3 if |top_half] = 0 then

4 ‘ break;

5 end

6 Select P, P, ~ U'(top_half), without replacement;
7 top_half « top_half\ { P}, P,};
8 x~U{l,...,L-1});

9 if random() < cp, then

10 | ¢ P[l:x]| Pylx+1: L]
11 else if random() < cp, then
12 | ¢ Pl:x] || Plx+1: L]
13 else

14 ‘ ¢ < random choice(P,;, P,);
15 end

16 Prew < Prew U {c};
17 end

18 for i < 1 to |non_elite| do
19 if |non_elite| = 0 then

20 ‘ break;

21 end

22 Select P, ~ U'(elite);

23 Select P, ~ U'(non_elite), without replacement;
24 non_elite < non_elite \ { P, };

25 x~U{L,...,L-1});
26 if random() < cp, then

27 | ¢ P[l:x]| Pylx+1: L]
28 else if random() < cp, then
29 | ¢ Plix] | Plx+1: L]
30 else

31 ‘ ¢ < random choice(P,, P,);
32 end

33 Prew < Prew U {c};

34 end

35 foreach ¢ € P, do
36 if random() < m, then

37 ‘ Modify a subsequence of ¢ (length < A,,. - L);
38 end
39 end

40 return P,

benchmark evidence. As a result, GNP-DT focused solely on topology
reconfiguration, though it can accommodate redispatch actions without
changing its formulation. The sequence of DT models is defined as
follows:

(i) The first DT model (DT1) to classify the flexibility type (e.g., line
reconnection vs. bus reconfiguration);

(i) The second DT model (DT2) to estimate the required number of
flexibility actions;

(iii) The third DT model (DT3) to estimate the specific line(s)/bus(es)
to operate.

(iv) The fourth DT model (DT4) will be used only if the detected
flexibility type involves bus reconfiguration (bus splitting) re-
garding DT1. The set of top-k most probable feasible topology
reconfiguration actions for the bus identified by DT3 is extracted
from DT4, based on the predicted class probabilities at the leaf
nodes.

F. Moaidi and R.J. Bessa

Energy and Al 23 (2026) 100672

Table 3
Summary of the DTs and their corresponding state variables.
Variable DT1 DT2 DT3 DT3 DT3 DT3 DT4
Action type Any Bus reconfig. Line disconn. Bus recovery Line reconnection Bus reconfig.

Cong. line IDs
Max overload

Split bus IDs
Disconn. line IDs
Cong. line count
Split bus count
Disconn. line count

AN N N N
'\\\'\\\'\g

<
AN N N N NN
AN NN

SN X NN X %
X X O\ X X X
AN NE NN IR

Table 3 presents a summary of the relevant state variables consid-
ered for different decision trees (DT1-DT4) and actions in the system.
Each row indicates whether a specific variable (for example, congested
line IDs, maximum overload, split bus count) is used (v') or not (X) by
the corresponding decision logic. The variables include:

» Cong. Line IDs: identifiers of congested lines;

» Max Overload: maximum overload value among congested lines;
+ Split Bus IDs: identifiers of splitted buses;

» Disconn. Line IDs: identifiers of disconnected transmission lines;
» Cong. Line Count: total number of congested lines;

« Split Bus Count: number of splitted buses;

» Disconn. Line Count: number of disconnected lines.

DT3 and DT4 are dependent on the action type; in this regard, Bus
reconfig. refers to bus splitting. Line disconn. means disconnecting a
transmission line to isolate a fault or relieve congestion. Bus recovery
restores a previously reconfigured bus (split bus) to the original topol-
ogy (unaltered topology), and line reconnection involves re-energizing
a previously disconnected line to resume normal operation. In this
work, line identifiers (e.g., Cong. Line ID_*) are not arbitrary indices but
are mapped to physically meaningful locations in the power grid. Each
identifier corresponds to a specific transmission line whose electrical
location is associated with a predefined zone (area) or group of feeders
based on the grid layout. This structured mapping allows the model
to implicitly reason about localized congestion using indexed features
aligned with the physical topology of the system.

This module is a hierarchical approach in which each stage con-
strains and informs the subsequent one. For instance, the flexibility
type determined in the first stage conditions the search space for the
next model, which predicts how many units must be activated, and in
turn, this output influences the final model that selects which specific
assets to operate. Formally, each stage is modeled as a conditional
expectation:

yr =E [yr | me}r—l’j}r—Z’ ’j\)r—k’e] +e€ 13)

where j, denotes the predicted decision component at rule stage r,
conditioned on the input features X, preceding predicted components
Pr_ts P2y - s Pr_i» and model parameters 6. The parameter set 6 repre-
sents the learnable weights of the conditional model, including decision
thresholds, node weights, and any coefficients used to combine input
features and prior stage predictions. These parameters are estimated
during training by minimizing a suitable loss function (e.g., mean
squared error or cross-entropy) over the training episodes, using the
observed target outputs y,. The residual term ¢, captures unmodeled
variability at stage r. The residual term ¢, accounts for the prediction
error. This layered rule extraction allows the DT ensemble to cap-
ture interdependencies among rule components, while enabling both
interpretability and domain-relevant fidelity.

3. Test case
3.1. Description

The IEEE 118-bus system environment, featured in the L2ZRPN com-
petition at the 2022 World Congress on Computational Intelligence

(WCCI) [33], serves as the test case and is illustrated in Fig. 4. This
case incorporates an adversarial module that heuristically simulates
line outages to emulate the N-1 security criterion, while allocating 10%
to 30% of the generation mix to RES. It comprises 118 substations, 186
lines, 91 loads, and 62 generators.

A set of 48 episodes was generated, using the methodology from
[34], extracted from 12 months. Each scenario in the dataset repre-
sents a full operational episode. Scenarios were selected to cover all
months of the year and a variety of operating conditions, including
normal operation, high load, renewable variability, congestion-prone
situations, and contingencies. This approach ensures that both the
training and test sets are representative of the full range of realistic
grid conditions, allowing for robust evaluation of the proposed GNP-
DT agent. The episodes comprise 2018 time steps with a 5-minute
resolution to feed the GNP method, in which the elite graphs generated
49,186 grid operating conditions and corresponding action set pairs
for training DT models. All experiments use episode-level partitioning:
each scenario corresponds to a full operational episode and is assigned
entirely to either the training or test set to prevent temporal leakage. To
ensure both coverage and separation, four episodes from each month
were used for training and three episodes for testing, spanning the
full year and capturing seasonal variations and diverse grid operating
conditions. For robustness, the evaluation was conducted using 20 dif-
ferent random seeds for partitioning and training, ensuring that results
are statistically representative and not dependent on a specific initial-
ization. The proposed GNP algorithm interacted with the simulated
power grid using the Grid20p Al-friendly digital environment [19] as
the RL environment. To ensure a robust evaluation of the proposed
methodology, a distinct test set containing data from various months
was employed during the testing phase.

3.2. Evaluation metric and benchmarks

In terms of performance indicator, the score adopted in the LZRPN
competition [2] was used to allow a fair comparison with baseline
agents that evaluates both the operational cost and the survivability
of the agent. The score ranges from [—100.0, 0.0, 80.0, 100.0], each value
corresponding to a distinct level of performance by the agent during
an episode. A score of —100.0 indicates that no steps were played,
reflecting the maximum blackout penalty applied across all steps in
all scenarios. A score of 0.0 represents the performance of a “Do-
Nothing” baseline agent that takes no action and does not influence
the scenario; if this agent completes the episode, the effective score
range becomes [—100.0,0.0,100.0]. A score of 80.0 indicates that the
agent successfully plays through all scenarios without correcting line
disconnections caused by overloads; losses in this case are equal to
the difference between total generation and total consumption in each
scenario, and lines under maintenance are reconnected after their
maintenance period. The maximum score of 100.0 is awarded when the
agent both completes all scenarios and optimizes system performance
by reducing losses to 80% of those previously computed. Thus, higher
scores reflect more efficient decision-making and longer survival across
scenarios.

The following agents from the Grid20p baselines, which employ
topological reconfiguration strategies for congestion management, were
selected for benchmarking:

F. Moaidi and R.J. Bessa

03/01 00:00
—— powerline
== substation

load
O generator
storage
—e— no bus
—8— bus 1
bus 2

Energy and Al 23 (2026) 100672

Fig. 4. IEEE 118-bus system of the L2ZRPN-WCCI-2022 competition. All the elements at each substation are connected to bus-1 in the reference topology, which

could be switched to bus-2 through bus splitting actions.

ExpertOp4Grid: An ES which tries to solve congestion issues
within the grid [25] using an influence graph;

Enhanced ExpertOp4Grid: An ES which is an enhanced version
of ExpertOp4Grid agent explained in Section 2.1;

MILP agent: A Mixed Integer Linear Programming (MILP) agent
that seeks to minimize the overthermal lines based on DC approx-
imation [35] with CBC-solver [36];

CAgent: Curriculum Agent (Senior agent) that consists of a deep
RL model based on PPO [24] with a senior threshold of p,,;,, =
0.95. Note that this agent is an enhanced version of a model
originally developed for a past LZRPN competition [32], which
inspired subsequent agents in later editions and also the win-
ning solution of the 2023 Paris Region AI Challenge for Energy
Transition [37].

The hyperparameters of the proposed GNP algorithm, including the
crossover probabilities, mutation rate, and mutation range described in
Section 2.2, were tuned to ensure robust convergence and satisfactory
performance of the algorithm. The Bayesian optimization method was
applied across 16 episodes covering the whole season of the year to en-
sure that the selected hyperparameters generalize beyond a single run.
Table 4 presents the hyperparameters of the GNP algorithm. For clarity,
the following nomenclature is adopted throughout the experiments:
GNP-DT-1 refers to the agent trained with the survival-duration reward
function and experimental hyperparameters; GNP-DT-2 corresponds to
the agent trained with the proposed cost-aware reward function and
optimized hyperparameters; and GNP-DT-3 denotes the agent trained
with the survival-duration reward function but using the optimized
hyperparameters.

All experiments were conducted on a system running on a cloud-
based virtual machine with an AMD EPYC CPU with 8 cores at 2.94
GHz, 32 GB of RAM, and Microsoft Windows 10 Pro.

4. Experimental results

This section presents the experimental results, evaluating the per-
formance of the proposed agent across multiple random seeds and
scenarios. The analysis includes a comparison with three state-of-the-
art baseline models (available in the Grid20p environment) and focuses
on key metrics to assess the agent’s effectiveness and consistency.

Table 4

Hyperparameters of the adaptive GNP algorithm.
Hyperparameter Experimental Optimized
Population size 30 38
Elite fraction 0.1 0.24
Crossover probability cp, 0.5 0.41
Crossover probability cp, 1 0.70
Mutation probability m, 0.3 0.33
Maximum mutation range A, 0.7 0.77

Median survival time comparison. Fig. 5 presents the median survival
time across 36 test episodes for all evaluated agents. Among the pro-
posed variants, GNP-DT-2 and GNP-DT-3 demonstrate consistently su-
perior performance, reaching the maximum survival limit of 2018 steps
in multiple episodes (e.g., Jun 20, Sep_5_2). Notably, the cost-aware
reward used in GNP-DT-2 results in comparable or even improved
average survivability relative to the survival-based agents (GNP-DT-1
and GNP-DT-3), suggesting that cost optimization implicitly encourages
longer stable operation. In contrast, the optimization-based MILP and
the deep RL-based CAgent exhibit greater variability across episodes,
with early terminations in challenging conditions such as Feb 28 and
Dec 12. The expert-based Enhanced ExpertOp4Grid maintains steady
performance and consistently surpasses the baseline ExpertOp4Grid,
confirming the benefit of its refined heuristics. The passive Do-Nothing
agent remains the weakest performer throughout all episodes. Overall,
the GNP-DT family demonstrates the most resilient and adaptive be-
havior under diverse grid conditions, with GNP-DT-2 offering the best
trade-off between cost efficiency and operational stability.

Operational cost comparison. In terms of average operational cost, the
proposed GNP-DT variants demonstrate a clear improvement in eco-
nomic efficiency. Specifically, GNP-DT-2, which employs the cost-aware
reward, achieved the lowest average cost of 35.12 M€, followed by
GNP-DT-3 at 35.6 M€ and GNP-DT-1 at 38.22 M<€. This indicates that
integrating cost considerations into the reward function enhances both
economic performance and overall stability. Among the comparative
agents, the Enhanced ExpertOp4Grid and CAgent achieved moderate cost
reductions with 40.15 M€ and 40.40 M€, respectively, outperforming
the baseline ExpertOp4Grid (43.02 M<€). Conversely, the optimization-
based MILP agent exhibited the highest operational cost at 58.80 M€,

F. Moaidi and R.J. Bessa

8 GNP-DT-1 N GNP-DT-3

Energy and Al 23 (2026) 100672

B ExpertOp4Grid s CAgent

I GNP-DT-2 Enhanced ExpertOp4Grid s MILP Do Nothing

2000

1750 A

9]

£ 1500

=

©

> 1250

S

Z

>

¥ 1000 4

o

)

C

8 7504

el

()

=

500

250

0
NN YYNR A8 AT YR T YN I YN AR AT YNEMNME AT IR a g
coo S S IS 11 >xmnm o gss o pnon 1 g 2 Y
mHHHHQHHLLLLmNNCNNBNN@U\U’||Q_ <+ 0 > > 0 Vv v
S 0 0 e g s aeaoas 05 0 02 11535300900 =200009 0
ccoQouw s ss I > > = ¢ ¢ S ST I < QDN o O zZ 2 [a =
S © 0 O L] T © S5 S = = n 0
—_ = s = s s = =

Episode

Fig. 5. Visualization of the median survival time per episode. Each bar corresponds to the median survival time in the respective episode across all seeds.

Table 5

Performance comparison between different agents on L2RPN score and survival time.
Agent L2RPN Score Survival time

Mean Std Median 1st quantile 3rd quantile Min Max Median MSTCM

Do nothing 0 0 0 0 0 0 0 158 158
ExpertOp4Grid [25] 375 5.85 36.96 33.48 42.08 24.93 50.52 804 930.75
Enhanced ExpertOp4Grid 39.04 7.95 36.63 34.09 44.93 26.3 56.97 981 1170
GNP-DT-1 44.16 7.37 41.94 38.82 49.72 33.64 59 1034 1143.25
GNP-DT-2 48.1 7.07 46.01 43.73 52.73 36.04 62.33 1147 1439.5
GNP-DT-3 46.99 7.43 45.68 41.97 52.97 35.08 62.12 1135 1282.25
MILP [35] 6.6 9.62 4.16 -0.2 10.5 -10.55 30.88 511 701.25
CAgent [24] 37.7 6.89 37.35 34.07 43.12 23.29 50.85 1032 1257.5

reflecting limited adaptability under dynamic grid conditions. Overall, WS GNP-DT-1 WEEl GNP-DT-3 EEE ExpertOp4Grid WS CAgent

the GNP-DT family effectively balances system survivability and op-
erational cost, with GNP-DT-2 offering the most cost-efficient control
strategy.

L2RPN performance score. The L2RPN score quantifies the overall op-
erational effectiveness and reliability of the agents across dynamic
grid conditions. Fig. 6 illustrates the distribution of scores across 20
random seeds for all agents. Among the proposed variants, GNP-DT-
2 achieved the highest mean score of 48.10 with a median of 46.01,
followed closely by GNP-DT-3 (mean 46.99, median 45.68) and GNP-
DT-1 (mean 44.16, median 41.94). The higher median and tighter
interquartile range of GNP-DT-2 indicate both improved performance
and enhanced stability, demonstrating the advantage of incorporating
cost-awareness into the reward function. Among the comparative base-
lines, the Enhanced ExpertOp4Grid (mean 39.04) surpasses the original
ExpertOp4Grid (mean 37.50) and the deep RL-based CAgent (mean
37.70), confirming the benefit of refined rule-based heuristics. The
CAgent exhibits comparable spread to ExpertOp4Grid, ranging from
23.29 to 50.85, though with a slightly lower median. MILP, represent-
ing a DC optimization benchmark, demonstrates the widest variability
and lowest scores overall, including negative values in some seeds,
highlighting its instability and inefficiency in this context. Overall, the
GNP-DT family—particularly GNP-DT-2—demonstrates superior and
reliable performance across all tested configurations, balancing both
resilience and cost efficiency.

Table 5 provides a comprehensive comparison of the agents in terms
of their average L2RPN score, score distribution, and survivability
metrics. The GNP-DT variants consistently outperform all benchmarks,
with GNP-DT-2 achieving the highest average score (48.1), reflect-
ing stable and effective control. Its score distribution is particularly

[GNP-DT-2 Enhanced ExpertOp4Grid s MILP

Agents

§ L

-10 0 10 20 30 40 50 60
L2RPN Score

Fig. 6. Boxplot of the agent average score across all 20 seeds. Each point
corresponds to the average score of all scenarios for one seed.

consistent, with a minimum of 36.04 and a third quartile of 52.73,
while median survival (1147) and MSTCM (1439.5) indicate strong
robustness across episodes (MSTCM is the median of these survival
times across all episodes and all seeds, providing a measure of typical
agent longevity). Compared to CAgent and Enhanced ExpertOp4Grid,
GNP-DT-2 improves the average L2RPN score by up to 28%, GNP-DT-3
by 25%, and GNP-DT-1 by 18%. The superior performance of GNP-
DT-2 agent trained with the cost-aware reward not only achieved a
higher cumulative score but also demonstrated longer average survival
times. This indicates that minimizing operational cost indirectly rein-
forces grid survivability, as blackout costs dominate the total episode

10

F. Moaidi and R.J. Bessa

penalty. Consequently, the cost-aware reward yields both economically
and operationally efficient control policies. GNP-DT-3 also performs
strongly (mean = 46.99, median survival = 1135, MSTCM = 1282.25),
demonstrating the benefits of hyperparameter optimization even with
the survival-duration reward. GNP-DT-1 achieves a mean score of 44.16
and median survival of 1034, already surpassing conventional bench-
marks and confirming the progressive improvement across the variants.
Among the baseline agents, CAgent and Enhanced ExpertOp4Grid show
competitive scores (37.7 and 39.04, respectively), with CAgent at-
taining a higher MSTCM (1257.5) than ExpertOp4Grid (930.75). In
contrast, MILP exhibits low reliability (mean = 6.6, median survival
= 511, MSTCM = 701.25), and the Do Nothing agent scores zero with
minimal survival. Overall, GNP-DT-2 achieves the highest performance
and robustness, demonstrating that cost-aware training effectively bal-
ances score maximization and operational longevity, while other agents
either underperform or show greater variability in survival.

Inference time. The average time required to compute and apply an
action varies significantly across agents. The proposed GNP-DT agent
demonstrates the fastest inference time, requiring only 0.11 s on aver-
age, making it highly suitable for real-time deployment. In comparison,
the ExpertOp4Grid baseline responds in 0.54 s, while both the Enhanced
ExpertOp4Grid and CAgent take longer, averaging 2.23 and 2.33 s,
respectively. The MILP method is the slowest, with an average inference
time of 20.58 s, an expected outcome given that it requires solving
an MILP problem at each timestep. These results highlight the advan-
tage of GNP-DT in real-time decision making under operational time
constraints.

5. Interpretability: A discussion

This section discusses the interpretability of the GNP-DT method
during both the learning and operational phases.

5.1. Learning phase

To provide some insight into the reasoning window of the learning
phase, Tables 6 and 7 together illustrate three decision graphs G,, G,
and G, to address line congestion in a specific period of an episode.
In Table 6, HB, LB, and DSB stand for hub bus, buses on the looped
path, and downstream buses (Table 1 defines each type of these buses),
respectively. In addition, the numbers in the detection rows represent
the congested lines. The behavior of each graph is shaped by its internal
judgment nodes and their relevant functions and parameters, as men-
tioned in Table 1 in Section 2.1. The key parameters that distinguish
the graphs are presented in Table 7, which can cause changes in the
functions of the graphs as follows:

+ The threshold I, defines the overload limit used to trigger the
action proposal process; both G, and G, use a strict threshold
(100%), while G, lowers this to 90%, allowing for a proactive
action.

The parameter f,,, which sets the threshold coefficient for de-
termining the influence path, is highest in G, (0.6), indicating a
more rigorous but potentially narrower focus in selecting effec-
tive paths. In contrast, G, balances this (0.4), leading to more
robust but flexible action pathways. For example, with the same
detection criterion, when congestion starts on lines 12 and 20 and
is followed by lines 41, 44 and 51, the flexible units activated by
G, were more effective in alleviating congestion at each timestep,
the trajectory of actions (bus 67 — bus 81 — bus 93 — bus 95)
outperformed the selection of actions (bus 68 — bus 76 — lines
24 and 146) by G,.

The "clp mentioned in Table 1 stands for the actions with the
highest priority, where G, and G, give the highest focus to
the buses at the hub points, and G, has the most tendency to
reconfigure the buses on the looped path, which was in some
timesteps a less effective selection.

11

Energy and Al 23 (2026) 100672

» The quality of the action in terms of the topological score is
indicated by o, as mentioned in Table 1. In this regard, releasing a
critical congestion is satisfying for G, and G, while G, demands
full topological resolution of all congestion, critical or not, before
terminating the search. This stricter criterion ensures that G,
systematically avoids the risk of creating new congestions and
provides a safer solution that relieves all overloads.

The observed action trajectory confirms these architectural differ-
ences. G, acts sequentially on hub buses but fails to prevent collapse
due to late response and incomplete resolution. G, detects earlier
and applies diverse actions, including looped and downstream bus
reconfigurations, surviving the scenario later because it raises more
overload concerns with its action trajectory. G., however, mirrors
G, in the type of action but distinguishes itself by selecting actions
that fully mitigate system risk, leading to survival without creating
new overloads. These comparisons demonstrate the interpretability of
the proposed method during the learning phase and support human
operators in reasoning about and building trust in the resulting elite
graphs. For example, this traceable possibility in GNP can provide the
operator with such a sensitivity analysis on the graph parameters that
justifies the superiority of G, over G, and G,.

In addition, this example provides insight into the evolutionary
phase of the GNP. The initial seed corresponds to the baseline ex-
pert system (Ga). Through evolutionary operators and reinforcement-
learning-based fitness evaluation, the GNP progressively adapts, pro-
ducing intermediate graphs (Gb) and ultimately an elite graph (Gc).
Comparative results show that Ge consistently outperforms both Ga and
Gb, confirming that the performance gains are attributable to the learn-
ing and adaptation process rather than to the expert initialization alone.
This distinction highlights that while the expert provides a structured
starting point, the final evolved agent embodies novel strategies that
emerge through the learning process.

5.2. Operational phase

To demonstrate the interpretability of the proposed method during
the operational phase, a representative portion of the complete DT is
illustrated in Fig. 7. This selected partial tree is from the DT3 model
(bus reconfiguration), which is relevant to determining the ID of the
flexible unit (DT2) when the flexibility type (DT1) and the number of
needed actions (DT2) have been previously predicted.

In the DT plot, value attribute represents the proportional distribu-
tion of these instances across classes, and the class attribute corresponds
to the majority class, indicating the predicted outcome at that node.
Each box’s color represents the dominant class in that node. Nodes
sharing the same color are mostly associated with the same class. The
intensity of the color indicates the node’s purity — darker shades mean
the node contains mostly one class, while lighter shades suggest a mix
of classes. This visual aid helps quickly identify which class is favored
and how confidently the tree makes its splits. Moreover, left arrows
correspond to True, and right arrows correspond to False for each split.

This example determines the next control action based on the grid
congestion state and prior topology changes. Cong. Line ID_1 represents
the identifier of the line with the highest loading percentage (i.e., most
congested) at the current timestep, followed by Cong. Line ID_2, Cong.
Line ID_3, etc., sorted in descending order based on their loading
levels. Split Bus ID_i indicates the ID of a bus that has already been
reconfigured, sorted by ID. The class output of the tree corresponds to
the ID of a candidate bus selected for reconfiguration. Due to limited
space, the tree was plotted for only three classes using reconfiguration
buses 16, 67, and 93. Some illustrative human-readable rules could be
extracted from the DT as follows:

1. If Cong. Line ID_1 is in Z1 (i.e., the line with the maximum over-
load is situated in zone Z1) and Cong. Line ID 2 is in Z1 or Z2,
the model selects bus 67 from Z1 as the next reconfiguration
candidate—that is, the bus proposed for splitting to alleviate
congestion at the current timestep.

F. Moaidi and R.J. Bessa

Energy and Al 23 (2026) 100672

Table 6
Comparison of decision graph action trajectory corresponds to the line congestion detection across 9 illustrative timesteps.
Time step 1 2 3 4 5 6 7 8 9
G,: Detection - - {12,20} {20} {41,44,51, Collapse Collapse Collapse Collapse
175,185}
G,: Action - - Reconfig. Reconfig. Disconn. - - - -
HB 68 HB 76 {24,146}
G,: Detection {20} (41,51} (41,51} {12} {12} (41,44,51} (175} (175} -
G,: Action Reconfig. Disconn. Reconfig. Disconn. Reconfig. Reconfig. Reconfig. Reconfig. -
LB 81 {24,16} LB 79 {13,122} LB 79 DSB 95 DSB 67 DSB 79
G,: Detection - - {12,20} {20} {41,44,51} {41} - - -
G.: Action - - Reconfig. Reconfig. Reconfig. Reconfig. - - -
HB 67 HB 81 HB 93 HB 95

True

Cong. Line ID_1in [Z1]
value = [0.024, 0.561, 0.415]
class = 67

Cong. Line ID_2in [21, Z2]
value = [0.042, 0.875, 0.083]
class = 67

T~

_ Cong. Line ID_3 in [Z1, Z2]
value =[0.0, 1.0, 0.0] value = [0.333, 0.0, 0.667]
class = 67
class = 93

value = [1.0, 0.0, 0.0]
class = 16

Cong. Line ID_1in [Z1, Z2]
value = [0.523, 0.267, 0.209]
class = 16

False

Split Bus ID_2 in [Z1, Z2, 73]
value = [0.978, 0.0, 0.022]
class = 16

value =[1.0, 0.0, 0.0]
class =16

value = [0.0, 1.0, 0.0]
class =67

Split Bus ID_1 in [Z1, Z2]
value =[0.0, 0.5, 0.5]
class = 67

value = [0.0, 1.0, 0.0]
class = 67

Fig. 7. Excerpt from DT3 (bus reconfig.) for flexible unit ID determination. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 7
Summary of functional differences between decision graphs.
Aspect G, G, G,
I, 100% 90% 100%
B 0.2 0.6 0.4
ajp Hub Loop Hub
o, Critical issue Critical issue All issues

2. If Cong. Line ID_1 is in Z2, and Cong. Line ID_4 in Z3, and Split
Bus ID_1 in {Z1, Z2, Z3}, then the model returns bus 93 from
Z3 for splitting.

3. If Cong. Line ID.1 out of {Z1,Z2} and Split Bus ID 2 is in
{Z1,Z2,73}, bus 16 from Z2 is the candidate for reconfigu-
ration action (bus splitting).

4. If Cong. Line ID_1 is in Z2, and Cong. Line ID 4isin {Z1, Z2, Z3},
then the model selects bus 67 from Z1 for bus splitting.

The interpretability achieved through the DT extraction is primar-
ily logical, as it expresses the agent’s control policy in the form of
explicit “if-then” decision rules. Although such interpretability does
not constitute causal reasoning in the strict analytical sense, it pro-
vides a practical and meaningful explanation of the agent’s actions
that aligns with human operator expertise. Each path in the DT di-
rectly links observable grid states to corresponding control decisions,
allowing operators to trace why a particular action is recommended
under specific system conditions and another action is suitable under
a different operating condition. For example, a rule such as “If con-
gestion occurs in Zone-1 and an overload also exists in Zone-2, then

12

split Bus-X and Bus-Y could be reconfigured only if the congestion
is in Zone-1” demonstrates the underlying decision logic that con-
nects system observations to a physically interpretable control measure.
This transparency enables operators to validate, trust, and refine the
automated control behavior, bridging the gap between data-driven
intelligence and human operational understanding. Consequently, the
proposed interpretability mechanism provides actionable insight into
the decision-making process, even though it remains logically rather
than causally explanatory.

6. Conclusions

This work proposed an interpretable and adaptive control frame-
work based on Genetic Network Programming with Decision Trees
(GNP-DT) for real-time congestion management in power systems.
The agent integrates rule-based structures with RL to evolve effec-
tive control strategies, maintaining both interpretability and adapt-
ability. Through extensive evaluation across multiple stochastic seeds
and benchmark agents, GNP-DT demonstrated superior performance in
terms of L2RPN score, survival time, and operational cost compared
to baseline methods of different natures, including an expert system,
MILP with DC approximation, and a deep RL-based agent (CAgent). In
particular, GNP-DT achieved an improvement in the average score of
up to 28% over ExpertOp4Grid and the deep RL agent and consistently
ensured a higher median survival and a lower average operational cost.

Moreover, the framework maintained high computational
efficiency, exhibiting significantly shorter inference times than
optimization-based and deep learning approaches. The alignment of

F. Moaidi and R.J. Bessa

GNP-DT performance with interpretable design principles supports its
practical applicability in real-world scenarios that require transparent
and reliable grid control. Future work could research the integration of
multi-agent coordination and real-time memory sharing mechanisms to
further enhance the adaptability and scalability of control strategies in
large-scale power systems.

CRediT authorship contribution statement

Ferinar Moaidi: Writing — review & editing, Writing — original
draft, Validation, Software, Methodology, Data curation, Conceptu-
alization. Ricardo J. Bessa: Writing — review & editing, Supervi-
sion, Resources, Methodology, Funding acquisition, Formal analysis,
Conceptualization.

Code availability

The code is publicly available as open source through the GitHub
repository of the AI4REALNET European project.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Ferinar Moaidi reports financial support was provided by Foundation
for Science and Technology. Ferinar Moaidi reports financial support
was provided by Horizon Europe. Ricardo Jorge Bessa reports financial
support was provided by Horizon Europe. If there are other authors,
they declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgments

This work is part of the AI4REALNET (AI for REAL-world NET-
work operation) project, which received funding from European Union’s
Horizon Europe Research and Innovation programme under the Grant
Agreement No 101119527, and from the Swiss State Secretariat for
Education, Research and Innovation (SERI). This project is funded
by the European Union and SERI. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those
of the European Union and SERI. Neither the European Union nor the
granting authority can be held responsible for them. Ferinar Moaidi was
supported by FCT (Fundagdo para a Ciéncia e a Tecnologia) within the
Ph.D. Grant 2023.04869.BD.

Data availability

GitHub repository of the AI4REALNET European project.

References

[1] Marot A, Kelly A, Naglic M, Barbesant V, Cremer J, Stefanov A, Viebahn J.
Perspectives on future power system control centers for energy transition. J Mod
Power Syst Clean Energy 2022;10(2):328-44. http://dx.doi.org/10.35833/MPCE.
2021.000673.

Marot A, Donnot G, Kelly A, O’Sullivan A, Viebahn J, Awad M, Guyon I, Panci-
atici P, Romero C. Learning to run a power network challenge: a retrospective
analysis. In: Proceedings of machine learning research. NeurIPS 2020 competition
and demonstration track, vol. 133, 2021, p. 112-32. http://dx.doi.org/10.48550/
arXiv.2103.03104.

Mazi M, et al. Correction of overloads and voltage violations by corrective
control. IEEE Trans Power Syst 1986;1(2):73-80. http://dx.doi.org/10.1109/
TPWRS.1986.4334990.

Bacher R, Glavitsch H. Network topology optimization with security constraints.
IEEE Trans Power Syst 1986;1(4):103-11. http://dx.doi.org/10.1109/TPWRS.
1986.4335024.

[2]

[3]

[4]

13

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Energy and Al 23 (2026) 100672

Makram I, et al. Optimization of transmission line switching using the Z-matrix
method. IEEE Trans Power Syst 1989;4(1):259-64. http://dx.doi.org/10.1109/
59.193839.

Chen S, Glavitsch H. Stabilizing switching. IEEE Trans
1993;8(4):1511-7. http://dx.doi.org/10.1109/59.260953.
Granelli G, et al. Optimal network reconfiguration for congestion man-
agement by deterministic and genetic algorithms. Electr Power Syst Res
2006;76(6-7):549-56. http://dx.doi.org/10.1016/j.epsr.2005.09.014.

Fisher EB, et al. Optimal transmission switching. IEEE Trans Power Syst
2008;23(3):1346-55. http://dx.doi.org/10.1109/TPWRS.2008.922256.
Heidarifar M, et al. An optimal transmission line switching and bus splitting
heuristic incorporating AC and N-1 contingency constraints. Int J Electr Power
Energy Syst 2021;133:107278. http://dx.doi.org/10.1016/j.ijepes.2021.107278.
Zhou Y, et al. Substation-level grid topology optimization using bus splitting.
2020, http://dx.doi.org/10.48550/arXiv.2009.14418, arXiv.

Zhang Y, Liu Y. Multi-period optimal transmission switching with voltage
stability and security constraints. Sustainability 2024;16(18):8272. http://dx.doi.
org/10.3390/5u16188272.

Tavakkoli MA, Amjady N. Incorporating bus-bar switching actions into AC
optimal power flow to avoid over-current status. Sci Iran 2019;26(1):206-13.
http://dx.doi.org/10.24200/5¢i.2019.54166.3625.

Pei Z, Rojas-Arevalo AM, de Haan FJ, Lipovetzky N, Moallemi EA. Reinforce-
ment learning for decision-making under deep uncertainty. J Environ Manag
2024;359:120968. http://dx.doi.org/10.1016/j.jenvman.2024.120968.

Wang X, Zhong H, Zhang G, Ruan G, He Y, Yu Z. Look-ahead AC optimal power
flow: A model-informed reinforcement learning approach. 2023, arXiv preprint
arXiv:2303.02306. URL: https://doi.org/10.48550/arXiv.2303.02306.

Wu T, Scaglione A, Arnold D. Constrained reinforcement learning for predictive
control in real-time stochastic dynamic optimal power flow. 2023, http://dx.doi.
org/10.48550/arXiv.2302.10382, arXiv preprint arXiv:2302.10382.

Awais MU. Using deep reinforcement learning to solve optimal power flow
problem with generator failures. 2022, http://dx.doi.org/10.48550/arXiv.2205.
02108, arXiv preprint arXiv:2205.02108.

Li J, Zhang R, Wang H, Liu Z, Lai H, Zhang Y. Deep reinforcement learning
for optimal power flow with renewables using graph information. 2021, http:
//dx.doi.org/10.48550/arXiv.2112.11461, arXiv preprint arXiv:2112.11461.
Marot A, Donon B, Guyon I, Donnot B. Learning to run a power network
competition. In: CiML workshop. NeurIPS, Montréal, Canada; 2018, URL: https:
//hal.science/hal-01968295.

Donnot B. Grid2op- A testbed platform to model sequential decision making in
power systems. 2020, URL: https://GitHub.com/Grid20p/grid2op.

Omnes L, Marot A, Donnot B. Adversarial training for a continuous robustness
control problem in power systems. In: 2021 IEEE madrid PowerTech. 2020, p.
1-6. http://dx.doi.org/10.48550/arXiv.2012.11390.

Marot A, Guyon IM, Donnot B, Dulac-Arnold G, Panciatici P, Awad M, O’Sul-
livan A, Kelly A, Hampel-Arias Z. L2RPN: Learning to run a power network
in a sustainable world NeurIPS2020 challenge design. 2020, URL: https://api.
semanticscholar.org/CorpusID:243830891.

Zhou B, Zeng H, Liu Y, Li K, Wang F, Tian H. Action set based policy optimization
for safe power grid management. In: ECML/PKDD. 2021, http://dx.doi.org/10.
48550/arXiv.2106.15200.

Chauhan A, Baranwal M, Basumatary A. PowRL: A reinforcement learning
framework for robust management of power networks. In: Proceedings of the
AAAI conference on artificial intelligence. vol. 37, 2023, p. 14757-64. http:
//dx.doi.org/10.1609/aaai.v37i12.26724, 12.

Lehna M, Viebahn J, Marot A, Tomforde S, Scholz C. Managing power grids
through topology actions: A comparative study between advanced rule-based and
reinforcement learning agents. Energy Al 2023;14:100276. http://dx.doi.org/10.
1016/j.egyai.2023.100276.

Marot A, Donnot B, Tazi S, Panciatici P. Expert system for topological remedial
action discovery in smart grids. In: Mediterranean conference on power genera-
tion, transmission, distribution and energy conversion. MEDPOWER 2018, 2018,
p. 1-6. http://dx.doi.org/10.1049/cp.2018.1875.

Mabu S, Hirasawa K, Obayashi M, Kuremoto T. Enhanced decision making
mechanism of rule-based genetic network programming for creating stock trading
signals. Expert Syst Appl 2013;40(16):6311-20. http://dx.doi.org/10.1016/j.
eswa.2013.05.037.

Yoon D, Hong S, Lee B-J, Kim K-E. Winning the L2{RPN} challenge: Power
grid management via semi-Markov afterstate actor-critic. In: International con-
ference on learning representations. 2021, URL: https://openreview.net/forum?
id=LmUJqB1Cz8.

Puterman ML. Markov decision processes: Discrete stochastic dynamic pro-
gramming. Hoboken, NJ: John Wiley & Sons; 2005, http://dx.doi.org/10.1002/
9780470316887.

fle-de-France Region and RTE. Paris region Al challenge for energy tran-
sition: Low-carbon grid operations. 2023, URL: https://www.iledefrance.fr/
sites/default/files/medias/2023/05/Description_Challenge RTE.pdf. [Accessed 03
October 2025].

Sutton RS, Barto AG. Reinforcement learning: An introduction. 2nd ed.. MIT
Press; 2018, URL: http://incompleteideas.net/book/the-book-2nd.html.

Power Syst

https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
https://github.com/AI4REALNET/GNPDT
http://dx.doi.org/10.35833/MPCE.2021.000673
http://dx.doi.org/10.35833/MPCE.2021.000673
http://dx.doi.org/10.35833/MPCE.2021.000673
http://dx.doi.org/10.48550/arXiv.2103.03104
http://dx.doi.org/10.48550/arXiv.2103.03104
http://dx.doi.org/10.48550/arXiv.2103.03104
http://dx.doi.org/10.1109/TPWRS.1986.4334990
http://dx.doi.org/10.1109/TPWRS.1986.4334990
http://dx.doi.org/10.1109/TPWRS.1986.4334990
http://dx.doi.org/10.1109/TPWRS.1986.4335024
http://dx.doi.org/10.1109/TPWRS.1986.4335024
http://dx.doi.org/10.1109/TPWRS.1986.4335024
http://dx.doi.org/10.1109/59.193839
http://dx.doi.org/10.1109/59.193839
http://dx.doi.org/10.1109/59.193839
http://dx.doi.org/10.1109/59.260953
http://dx.doi.org/10.1016/j.epsr.2005.09.014
http://dx.doi.org/10.1109/TPWRS.2008.922256
http://dx.doi.org/10.1016/j.ijepes.2021.107278
http://dx.doi.org/10.48550/arXiv.2009.14418
http://dx.doi.org/10.3390/su16188272
http://dx.doi.org/10.3390/su16188272
http://dx.doi.org/10.3390/su16188272
http://dx.doi.org/10.24200/sci.2019.54166.3625
http://dx.doi.org/10.1016/j.jenvman.2024.120968
http://arxiv.org/abs/2303.02306
https://doi.org/10.48550/arXiv.2303.02306
http://dx.doi.org/10.48550/arXiv.2302.10382
http://dx.doi.org/10.48550/arXiv.2302.10382
http://dx.doi.org/10.48550/arXiv.2302.10382
http://arxiv.org/abs/2302.10382
http://dx.doi.org/10.48550/arXiv.2205.02108
http://dx.doi.org/10.48550/arXiv.2205.02108
http://dx.doi.org/10.48550/arXiv.2205.02108
http://arxiv.org/abs/2205.02108
http://dx.doi.org/10.48550/arXiv.2112.11461
http://dx.doi.org/10.48550/arXiv.2112.11461
http://dx.doi.org/10.48550/arXiv.2112.11461
http://arxiv.org/abs/2112.11461
https://hal.science/hal-01968295
https://hal.science/hal-01968295
https://hal.science/hal-01968295
https://GitHub.com/Grid2Op/grid2op
http://dx.doi.org/10.48550/arXiv.2012.11390
https://api.semanticscholar.org/CorpusID:243830891
https://api.semanticscholar.org/CorpusID:243830891
https://api.semanticscholar.org/CorpusID:243830891
http://dx.doi.org/10.48550/arXiv.2106.15200
http://dx.doi.org/10.48550/arXiv.2106.15200
http://dx.doi.org/10.48550/arXiv.2106.15200
http://dx.doi.org/10.1609/aaai.v37i12.26724
http://dx.doi.org/10.1609/aaai.v37i12.26724
http://dx.doi.org/10.1609/aaai.v37i12.26724
http://dx.doi.org/10.1016/j.egyai.2023.100276
http://dx.doi.org/10.1016/j.egyai.2023.100276
http://dx.doi.org/10.1016/j.egyai.2023.100276
http://dx.doi.org/10.1049/cp.2018.1875
http://dx.doi.org/10.1016/j.eswa.2013.05.037
http://dx.doi.org/10.1016/j.eswa.2013.05.037
http://dx.doi.org/10.1016/j.eswa.2013.05.037
https://openreview.net/forum?id=LmUJqB1Cz8
https://openreview.net/forum?id=LmUJqB1Cz8
https://openreview.net/forum?id=LmUJqB1Cz8
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1002/9780470316887
http://dx.doi.org/10.1002/9780470316887
https://www.iledefrance.fr/sites/default/files/medias/2023/05/Description_Challenge_RTE.pdf
https://www.iledefrance.fr/sites/default/files/medias/2023/05/Description_Challenge_RTE.pdf
https://www.iledefrance.fr/sites/default/files/medias/2023/05/Description_Challenge_RTE.pdf
http://incompleteideas.net/book/the-book-2nd.html

F. Moaidi and R.J. Bessa

[31]

[32]

[33]

[34]

Bessa RJ, Moaidi F, Viana J, Andrade JR. Uncertainty-aware procurement of
flexibilities for electrical grid operational planning. IEEE Trans Sustain Energy
2024;15(2):789-802. http://dx.doi.org/10.1109/TSTE.2023.3305865.

Binbin C. Teacher-tutor-junior student-senior student. 2025, URL: https://github.
com/Aspirin96/L2RPN_NIPS_2020_a_PPO Solution. GitHub.

Grid20p Documentation. Available environments — Grid2op 1.10.4 docu-
mentation. 2025, https://grid2op.readthedocs.io/en/latest/available_envs.html.
[Accessed 28 May 2025].

Paulos J, Silva P, Bessa R, Marot A, Dejaegher J, Donnot B. Generation of
power network operating scenarios for an Al-friendly digital environment. In:
IEEE PowerTech 2025 conference. Kiel, Germany; 2025.

14

[35]

[36]

[37]

Energy and Al 23 (2026) 100672

Grid2op Contributors. grid2op-milp-agent: A MILP-based grid topology control
agent for the grid2op environment. 2025, https://github.com/Grid2op/grid2op-
milp-agent. [Accessed 07 June 2025].

Forrest J, et al. CBC (coin-or branch and cut). 2020, Version 2.10.5, COIN-OR.
https://github.com/coin-or/Cbc.

Sintes J. How we built the winning real time autonomous agent for
power grid management in the L2RPN challenge 2023. 2024, URL:
https://medium.com/@lajavaness/how-we-built-the-winning-real-time-
autonomous-agent-for-power-grid-management-in-the-12rpn-41ab3cfaddbd.
Medium.

http://dx.doi.org/10.1109/TSTE.2023.3305865
https://github.com/Aspirin96/L2RPN_NIPS_2020_a_PPO_Solution
https://github.com/Aspirin96/L2RPN_NIPS_2020_a_PPO_Solution
https://github.com/Aspirin96/L2RPN_NIPS_2020_a_PPO_Solution
https://grid2op.readthedocs.io/en/latest/available_envs.html
http://refhub.elsevier.com/S2666-5468(25)00204-6/sb34
http://refhub.elsevier.com/S2666-5468(25)00204-6/sb34
http://refhub.elsevier.com/S2666-5468(25)00204-6/sb34
http://refhub.elsevier.com/S2666-5468(25)00204-6/sb34
http://refhub.elsevier.com/S2666-5468(25)00204-6/sb34
https://github.com/Grid2op/grid2op-milp-agent
https://github.com/Grid2op/grid2op-milp-agent
https://github.com/Grid2op/grid2op-milp-agent
https://github.com/coin-or/Cbc
https://medium.com/@lajavaness/how-we-built-the-winning-real-time-autonomous-agent-for-power-grid-management-in-the-l2rpn-41ab3cfaddbd
https://medium.com/@lajavaness/how-we-built-the-winning-real-time-autonomous-agent-for-power-grid-management-in-the-l2rpn-41ab3cfaddbd
https://medium.com/@lajavaness/how-we-built-the-winning-real-time-autonomous-agent-for-power-grid-management-in-the-l2rpn-41ab3cfaddbd

	Evolving power system operator rules for real-time congestion management
	Introduction
	Literature review
	Contributions
	Structure

	Evolving system operation rules
	Expert system knowledge representation
	GNP rule evolution
	Decision tree rule extraction

	Test case
	Description
	Evaluation metric and benchmarks

	Experimental results
	Interpretability: A discussion
	Learning phase
	Operational phase

	Conclusions
	CRediT authorship contribution statement
	Code availability
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

