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 A B S T R A C T

The growing integration of renewable energy sources and the widespread electrification of the energy demand 
have significantly reduced the capacity margin of the electrical grid. This demands a more flexible approach to 
grid operation, for instance, combining real-time topology optimization and redispatching. Traditional expert-
driven decision-making rules may become insufficient to manage the increasing complexity of real-time grid 
operations and derive remedial actions under the N-1 contingency. This work proposes a novel hybrid AI 
framework for power grid topology control that integrates genetic network programming (GNP), reinforcement 
learning, and decision trees. A new variant of GNP is introduced that is capable of evolving the decision-making 
rules by learning from data in a reinforcement learning framework. The graph-based evolutionary structure 
of GNP and decision trees enables transparent, traceable reasoning. The proposed method outperforms both a 
baseline expert system and a state-of-the-art deep reinforcement learning agent on the IEEE 118-bus system, 
achieving up to an 28% improvement in a key performance metric used in the Learning to Run a Power 
Network (L2RPN) competition.
. Introduction

Real-time congestion management in transmission networks, partic-
larly under contingency scenarios, is becoming increasingly complex 
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due to a convergence of emerging challenges such as the variability and 
uncertainty of renewable energy sources (RES), the rising frequency 
and intensity of extreme weather events, and the increasing risk of 
cyberattacks on critical infrastructures. In this demanding context, 
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control room operators are required to rapidly assess system conditions 
and define effective remedial actions to maintain grid stability, prevent 
overloads, and mitigate the risk of cascading failures. These remedial 
actions may involve generation redispatch, RES curtailment, demand 
response, and topological reconfiguration of the network. The large 
number of possible action combinations, coupled with the need for 
real-time decision-making, makes it extremely challenging to identify 
optimal solutions, which often requires the use of approximate or 
heuristic methods to support timely and reliable operations [1].

This work builds upon the longstanding concept of expert sys-
tems (ES) in power systems, traditionally rule-based approaches that 
integrate expert domain knowledge with physics-based models, and 
introduces a data-driven methodology to enhance these systems. Specif-
ically, focusing on the real-time congestion management problem, it 
adopts the formalism of Markov decision processes as established in the 
Learning to Run a Power Network (L2RPN) competition [2], created 
by RTE (the French transmission system operator), and proposes the 
augmentation of ES by using reinforcement learning (RL), enabling the 
ES to learn and adapt optimal policies from experience and interaction 
with the environment.

1.1. Literature review

Early research on network topology control used heuristics to re-
duce congestion. Mazi et al. relied on engineering judgment and sensi-
tivity analysis for switching actions [3]. Bacher and Glavitsch modeled 
switching in optimal power flow (OPF) to minimize losses, though 
their method primarily focuses on static network snapshots rather 
than dynamic system behavior, limiting its adaptability to real-time 
operation [4]. Makram et al. introduced a Z-matrix strategy to en-
hance efficiency, but it lacked optimality guarantees and often omitted 
voltage constraints [5]. These early efforts, while foundational, were 
limited in scalability and real-time applicability, making them less 
suited to modern grids that demand dynamic, constraint-aware, and 
computationally efficient control strategies. During the 1990s, research 
increasingly addressed dynamic aspects of switching strategies. Chen 
and Glavitsch, for example, investigated switching actions aimed at 
enhancing system stability during emergencies, with a focus on tran-
sient dynamics [6]. While pioneering in considering dynamic response, 
their approach lacked integration within a formal OPF framework. 
In the early 2000s, optimization-based approaches regained attention. 
Granelli et al. [7] applied genetic algorithms for congestion man-
agement with topology reconfiguration under deterministic conditions 
(i.e., static load) conditions. However, the method lacked adaptability 
and contextual awareness, relying on fixed fitness evaluations without 
real-time feedback, limiting performance in dynamic scenarios. A key 
advancement came with the formalization of Optimal Transmission 
Switching (OTS). Fisher et al. [8] modeled OTS using mixed-integer 
programming within a DC-OPF framework, achieving notable cost re-
ductions. Yet, the neglect of AC system characteristics constrained its 
practical applicability.

Recent studies have further advanced the topology optimization 
action into the OPF problem. Heidarifar et al. [9] proposed a heuristic 
method incorporating AC power flow and N-1 contingency constraints 
into line switching and bus splitting. While effective, the approach faces 
real-time limitations due to the computational burden of contingency 
analysis. Zhou et al. addressed the optimization of the grid topology at 
the substation level using bus splitting actions, with the aim of reducing 
congestion and improving grid efficiency [10]. However, the complex-
ity of substation configurations and high computational demands pose 
challenges for real-time deployment. Zhang and Liu developed a mul-
tiperiod OPF model to manage voltage stability and security through 
transmission switching [11]. While it provides a comprehensive so-
lution, the method’s real-time application is limited by the need for 
extensive computations over multiple periods. Tavakkoli and Amjady 
extended the AC-OPF model by incorporating bus-bar switching actions 
2 
to prevent overload conditions [12]. But its practical use in real-time 
is constrained by the intricacy of the overload relay dynamics and the 
computational time required. These developments highlight the need 
to balance optimization accuracy with computational tractability in 
large-scale systems.

In parallel to conventional mathematical optimization, different 
groups have explored RL as a promising technique to achieve the 
goal of real-time decision making in large-scale and uncertain dynamic 
environments [13]. For instance, unlike the classical OPF, which relies 
on mathematical programming and model-based optimization, RL of-
fers a data-driven and adaptive approach capable, at inference time, 
to recommend remedial actions for a human operator. Building on 
these foundations, recent studies seek to enhance the practicality and 
robustness of RL in the power system operations context. For instance, 
Wang et al. integrated a physics-informed RL framework for AC-OPF 
considering future system conditions over a specified time horizon 
(e.g., several hours- or day-ahead) [14]. Wu et al. extended this concept 
by developing a safe RL method in which the learned policies respect 
operational limits during stochastic OPF [15]. Furthermore, RL has also 
been used to manage contingencies, (a) Awais proposed deep RL to 
handle generator failures [16], while Li et al. combined graph-based 
learning with a deep RL model (graph neural network) to capture 
the network topology in OPF problems involving renewable genera-
tion [17]. Despite their potential, these approaches often struggle with 
convergence, interpretability, and the demand for large-scale training 
data.

In 2019, RTE launched the L2RPN (Learning to Run a Power Net-
work) challenge [18], focused on congestion management. The compe-
tition introduced Grid2Op [19], an RL environment designed to train 
and evaluate control algorithms using realistic grid dynamics and his-
torical data. The challenge evolved in complexity with the introduction 
of robustness and adaptability tracks in the NeurIPS 2020 edition. The 
robustness track incorporated an adversarial component that simulated 
𝑁 − 1 contingency scenarios by heuristically disabling transmission 
lines [20], thus testing agents’ resilience to sudden network disruptions. 
Meanwhile, the adaptability track introduced a higher share of RES, 
ranging from 10% to 30%, to evaluate the flexibility and responsiveness 
of agents under variable generation conditions [21]. The winning agent 
in the NeurIPS 2020 L2RPN competition [22] introduced an action-
set-based policy optimization technique that directly embeds safety 
constraints into the learning process – crucial for bridging experimental 
success and real-world applicability. Unlike other top submissions that 
used standard deep RL methods like Proximal Policy Optimization 
(PPO) and Double Deep Q-Network (DDQN), this agent employed 
a genetic algorithm for policy optimization. However, a subsequent 
analysis [2] showed that no submitted solution fully met the stringent 
safety and reliability standards required for deployment in operational 
power grids. A notable advancement beyond the L2RPN NeurIPS 2020 
and WCCI 2020 agents is the PowRL agent [23], a PPO-based model 
designed to manage power networks under variable and adversarial 
conditions. While it showed improved resilience and adaptability, its 
effectiveness depends heavily on the simulation environment’s fidelity 
and reward design. Similarly, CurriculumAgent (CAgent) [24] extended 
PPO by integrating an 𝑁 − 1 reliability strategy and systematically 
comparing rule-based and RL-driven topology control. Despite their 
promise, such RL models often lack interpretability, limiting trust in 
safety-critical grid operations.

These RL-based approaches represent significant progress toward 
intelligent data-driven grid management, demonstrating promising per-
formance in tasks such as re-dispatch and topology optimization. How-
ever, they often suffer from two shortcomings. Firstly, the limited 
interpretability of the learned policies. These approaches rely heavily 
on deep neural networks to approximate value or policy functions, mak-
ing it difficult to trace the rationale behind specific control actions, such 
as switching operations or dispatch decisions. For example, in [17], 
the agent learns to act based on graph-structured observations, but 



F. Moaidi and R.J. Bessa Energy and AI 23 (2026) 100672 
it provides no explicit explanation of the grid conditions or topolog-
ical features that triggered its decisions. Similarly, in [15], while the 
constraints are enforced via a safe-RL framework, the internal deci-
sion pathway remains opaque. Secondly, these methods often require 
large amounts of simulated data and prolonged training episodes to 
converge, which can be computationally expensive and hinder rapid 
adaptation to evolving grid conditions.

1.2. Contributions

Compared to the state-of-the-art, this paper introduces three novel 
contributions, which are discussed in detail below:

• Genetic Network Programming (GNP) framework that incorpo-
rates dynamic node behavior, enabling context-aware decision-
making in uncertain power system environments. Unlike conven-
tional approaches that rely on fixed function nodes, this method 
employs functional nodes that dynamically adapt their behavior 
based on real-time system states.

• A hybrid methodology that combines Genetic Network Program-
ming with Decision Tree (GNP-DT), and due to its graph-based 
structures, enhances interpretability through providing human-
understandable reasoning for each control action.

• This method outperformed both the baseline expert system [25] 
and CAgent [24] for the IEEE 118-bus system, achieving up to an 
18% improvement in the mean L2RPN performance score and an 
80% reduction in inference time.

In this work, a novel variant of GNP is proposed that diverges sig-
nificantly from conventional formulations such as [26], particularly in 
its structural design and dynamic node functionality. Traditional GNP 
frameworks typically use fixed function nodes and update them in a se-
quential manner, resulting in rigid decision paths that struggle to adapt 
in high-dimensional, time-varying environments. In contrast, the pro-
posed GNP architecture features adaptive nodes capable of modifying 
their behavior in response to evolving network states and accumulated 
experience. This flexibility allows the network to represent more so-
phisticated, state-dependent policies well-suited to the uncertain and 
non-linear nature of power systems, such as real-time fluctuations from 
RES or non-linearities inherent in AC power flow. Crucially, this design 
enables context-aware decision-making. For instance, an overloaded 
line may not always trigger the same switching action; instead, the 
node selects an appropriate control based on additional context, such 
as nearby contingencies, mimicking expert reasoning under diverse 
operational scenarios. As training progresses (i.e., learning from data 
and experience), these evolving heuristics capture expert-like judg-
ment, resulting in a responsive and interpretable control mechanism 
that adapts in real-time to changing grid conditions. Furthermore, the 
possibility of seeding at initialization the GNP population with expert-
derived decision graphs (e.g., from a pre-existing ES) can accelerate 
convergence in early learning phases by reducing the need for extensive 
trial-and-error.

Interpretability is a central contribution of the proposed method, 
achieved through the integration of graph-based structures. In par-
ticular: (a) unlike conventional deep RL approaches that operate as 
‘‘black-boxes’’, the GNP framework structures decision-making within 
an explicit graph-based representation. Each node in the graph corre-
sponds to a programmed decision heuristic, allowing the entire policy 
to be visualized and traced. This structure makes it possible to un-
derstand the rationale behind specific topology actions at any point 
during learning. In contrast, end-to-end deep RL methods, such as those 
in [22,24,27], often produce uninterpretable decisions encoded in high-
dimensional neural parameters, limiting reasoning and reducing trust 
from grid operators; (b) a multistage decision tree (DT) was employed 
to extract human-readable rules from the trajectory of actions created 
by top-performing decision graphs in GNP, which were collected into a 
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pool representing high-quality policy behavior. Separate DTs are then 
trained to capture key aspects of the control logic. This hierarchical rule 
extraction enables modular interpretation, where each stage informs 
and constrains the next.

1.3. Structure

The remainder of this paper is organized as follows. The framework 
of evolving system operation rules is described in Section 2, where the 
proposed AI agent is explained for real-time congestion management. 
The setup of the case study and the evaluation approach are detailed 
in Section 3. Section 4 provides a comparative discussion of the ex-
perimental results. The interpretability of the proposed framework is 
discussed in Section 5. Finally, the conclusions and future work are 
included in Section 6.

2. Evolving system operation rules

The proposed methodology targets real-time line congestion man-
agement in power systems. Its core concept involves evolving heuristic 
control policies, originally derived from operator expertise or pre-
existing expert systems, encoded as a decision graph (see Section 2.1).

The congestion management task can be modeled as a Markov 
decision process [28], defined as a tuple  = ( ,, 𝑃 , 𝑅, 𝛾), where:

•  is the state space. Each state 𝑠𝑡 ∈  represents the full state of 
the grid at time 𝑡, including power line flows, bus voltages, switch 
configurations, and operational constraints of the AC power flow.

•  is the action space. Each action 𝑎𝑡 ∈  corresponds to a con-
trol action, such as line switching (disconnection/reconnection), 
bus reconfiguration, bus recovery, or active power flexibility 
(e.g., redispatch, RES curtailment, storage system management).

• 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡) is the state transition function, encoding the system 
dynamics and physical laws that govern how the grid evolves in 
response to actions.

• 𝑅(𝑠𝑡, 𝑎𝑡) is the reward function, used to evaluate the safety and 
effectiveness of each action.

• 𝛾 ∈ [0, 1] is the discount factor.

At each timestep 𝑡, the agent observes the system state 𝑠𝑡 and 
selects an action 𝑎𝑡 according to a pre-defined policy 𝜋(𝑎𝑡 ∣ 𝑠𝑡). The 
environment then transits to a new state 𝑠𝑡+1 based on the dynamics: 

𝑠𝑡+1 ∼ 𝑃 (𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡), 𝑎𝑡 ∼ 𝜋(𝑎𝑡 ∣ 𝑠𝑡) (1)

In the original formulation, the RL framework relied on a sparse 
binary reward signal to encourage system survival. Let 𝑟(𝑠𝑡, 𝑎𝑡) denote 
the reward received at timestep 𝑡, where 𝑠𝑡 is the system state and 𝑎𝑡 the 
action taken. the agent receives a reward of 1 for each successful step 
𝑡 taken (i.e., system is able to fully meet the electricity demand with 
the available generation resources), and a reward of 0 upon reaching a 
terminal or gameover state (i.e., when transmission lines exceed their 
physical capacity and lead to cascading failure of other lines that ends 
with system collapse); this is similar to Grid2Op [19] Episode duration 
reward: 

𝑟(𝑠𝑡, 𝑎𝑡) =

{

1, if the agent successfully passes a step
0, if the agent reaches a gameover state (2)

The RL objective is to find the optimal policy 𝜋∗ that maximizes the 
expected cumulative reward over an episode of length 𝑇 : 

𝜋∗ = argmax
𝜋

E𝜏∼𝜋

[ 𝑇
∑

𝑡=0
𝑟(𝑠𝑡, 𝑎𝑡)

]

, (3)

where 𝜏 = (𝑠0, 𝑎0, 𝑠1,… , 𝑠𝑇 ) denotes a trajectory under policy 𝜋, and the 
expectation E𝜏∼𝜋 is over trajectories sampled under the environment 
dynamics. As also noted in [2,27], the winning deep reinforcement 
learning (deep-RL) agent of the L2RPN WCCI 2020 Challenge adopted 
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the episode-duration reward formulation, reinforcing its validity as a 
baseline reward signal for grid control learning tasks. While this formu-
lation encourages robust strategies for prolonging operation, it does not 
directly account for operational costs, which were only evaluated post 
hoc. To address this limitation, we propose a cost-aware reward that 
incorporates a formal operational cost model inspired by the reward 
proposed by Grid2Op contributors and closely aligned with the L2RPN 
scoring metric [29]. The per-timestep operational cost is: 
𝐶op(𝑡) = 𝐶dispatch(𝑡) + 𝐶flex(𝑡) + 𝐶losses(𝑡), (4)

with

𝐶dispatch(𝑡) ∶=
∑

𝑔∈
𝑐𝑔(𝑡) 𝑝𝑔(𝑡),

𝐶flex(𝑡) ∶= 𝐶storage(𝑡) + 𝐶curtail(𝑡) + 𝐶other_flex(𝑡),

𝐶losses(𝑡) ∶= cost-per-MWhloss × losses(𝑡),

and  is the set of generators. The blackout (unserved load) cost is: 
𝐶blackout(𝑡) = USL(𝑡) × 𝜋𝑚(𝑡) × 𝛽, (5)

with USL(𝑡) the not-supplied load, 𝜋𝑚(𝑡) the marginal price, and 𝛽 > 1
a penalty factor. The total episode cost is: 

episode =
𝑇
∑

𝑡=1

(

𝐶op(𝑡) + 𝐶blackout(𝑡)
)

. (6)

We formally define an upper bound for the episode as the worst-case 
cost: 

𝐶max ∶= max
worst scenario

𝑇
∑

𝑡=1
𝐶blackout(𝑡), (7)

where the worst scenario assumes that the agent fails to supply all 
demand at the highest marginal price in each timestep. The normalized 
cost-aware reward is then: 

𝑅cost =
𝐶max − episode

𝐶max
× 100, (8)

so that lower costs produce higher rewards on a 0–100 scale. Survival 
is naturally embedded, as blackouts contribute heavily to episode.

The survival-based reward emphasizes robustness alone, whereas 
the normalized cost-aware reward jointly captures system reliability 
and operational efficiency. The blackout penalties ensure that maintain-
ing supply security remains a primary objective, aligning the reward 
with real-world operational goals.

In this work, an undiscounted reward formulation (𝛾 = 1) was 
adopted to evaluate the cumulative performance of the control policy 
over a finite time horizon. This choice is motivated by the need to treat 
all future rewards with equal importance, as the objective is to opti-
mize the agent’s performance without biasing toward immediate gains. 
Since the task involves an episodic evaluation with a clear termination 
criterion, discounting is unnecessary and can introduce an unintended 
emphasis on short-term outcomes as explained in [30]. Moreover, the 
undiscounted reward simplifies the analysis and interpretation of the 
learned policies, ensuring that the optimization process directly targets 
the maximization of overall long-term effectiveness.

The learning process, including the evolution of expert knowledge, 
is detailed in Section 2.2. Moreover, a rule extraction method that 
predicts the best action with respect to evolved knowledge, considering 
contextual information, is described in Section 2.3.

2.1. Expert system knowledge representation

The baseline knowledge for this work and also for the GNP rule 
evolution in the next section is the ES developed by RTE [25], where 
the aim was to emulate the decision-making process of human op-
erators. This ES was enhanced by considering improvements in the 
calculation method for determining the influence graph, using more 
4 
Fig. 1. ES decision-making graph.

flexibility options (e.g., line switching and redispatch, in addition to the 
bus splitting option), new ranking criteria, the possibility of decision 
revision, and the possibility of proposing multiple actions rather than 
a single action.

The ES is formulated as a network graph for knowledge repre-
sentation, as illustrated in Fig.  1, where ES does not include dashed 
connections; these connections represent other reformation of ES used 
for initializing the GNP algorithm in Section 2.2. Each judgment node 
(J) within this framework is implemented as an individual computer 
program, responsible for a specific decision-making task, as detailed in 
Table  1.

The sequence of these judgment programs guarantees convergence 
to one of the processing nodes: 𝑃17, 𝑃 18, and 𝑃 19 execute bus-splitting 
for hub, loop, and downstream buses, respectively; 𝑃 20 handles line 
switching; 𝑃21 activates power flexibility; and 𝑃 22 implements a re-
covery strategy to the reference topology. This ensures that the system 
reaches a unique, executable action path tailored to the grid’s con-
dition. For instance, in a specific case, two congestion events were 
detected on lines 20 and 12.

• For line 20: The flexibility nodes identified buses 76 and 81 as 
hub buses.

• For line 12: The responsible flexibility group identified buses 67 
and 68 as hub buses. In addition, the bus set {67, 80, 79, 78} was 
recognized to form a looped path suitable for re-routing.

Since the congested lines were located in different zones, the judgment 
node J2, which handles inter-zone coordination, was not activated. In a 
specific topological configuration, bus 68 alone was sufficient to solve 
both congestion events. Consequently, the rest of the judgment nodes 
that contain additional conditional constraints were not activated.
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Table 1
Functions of judgment nodes (J) in the ES decision graph for congestion management.
 Node Function Details  
 J1 Identify and rank congested lines Based on criticality  
 J2 Skip further analysis Triggered if all issues are within a single critical zone  
 J3 Explore flexibility – hub bus splitting Key locations enabling power flow rerouting through parallel uncongested paths  
 J4 Explore flexibility – loop bus splitting Buses that build a local mesh  
 J5 Explore flexibility – downstream bus splitting Buses that could be supplied from a different path  
 J6 Explore flexibility – line switching Based on topological search [31]  
 J7 Explore flexibility – active power flexibility (redispatch, RES 

curtailment, storage management)
Based on sensitivity indices [31]  

 J8 Evaluate stop condition Solution quality considering the first threshold  
 J9 Evaluate stop condition Solution quality considering the second threshold  
 J10 Evaluate stop condition Number of analyzed issues exceeded a threshold  
 J11 Recovery Triggered when no valid action proposed  
 J12 Recovery Triggered when solution quality falls below a threshold  
 J13 Multi-criteria hierarchical ranking Uses tuple 𝜎(𝑎) = (𝜎𝑐𝑝(𝑎), 𝜎𝑡(𝑎), 𝜎𝑜𝑝(𝑎)):  
 𝜎𝑐𝑝(𝑎): Control priority (e.g., switching vs. redispatch)  
 𝜎𝑡(𝑎): Topological effectiveness (e.g, issue disappeared/alleviated/worsened/created)  
 𝜎𝑜𝑝(𝑎): Operational score (e.g., sum of squared marginal power flows)  
 J14 Ranking revision under thresholds Revising the criteria order in J13 per issue  
 J15 Ranking revision under thresholds Revising the criteria order in J13 after full analysis  
 J16 Add more actions Uses ranked list if one action is insufficient  
2.2. GNP rule evolution

To overcome the limitations of rigid decision-making in traditional 
GNP, the proposed method integrates an RL-enhanced GNP framework 
that supports dynamic and context-aware behavior. In this approach, 
each node is capable of altering its output depending on current grid 
conditions, such as line overloads, generation/load levels, or switch-
ing states. For example, a judgment node that initially selects the 
reconfiguration action at ‘Bus A in zone 1’ under moderate congestion 
may instead recommend reconfiguration at ‘Bus C in zone 3’ if RES 
fluctuations create a localized congestion between the two zones. The 
node’s behavior is therefore not statically defined, but instead learns 
a mapping from state features to decision criteria (e.g., change in 
priority of flexible units or threshold of activating a flexible unit), 
enabling adaptive control that aligns with requirements for real-time 
management. Furthermore, the execution sequence of the decision 
graph is not fixed, in contrast to traditional GNP, which follows a 
hardcoded node traversal. Instead, the proposed method allows the 
policy graph to activate different substructures conditionally, based on 
current state inputs. These conditions include the level of congestion, 
fault locations, substation configurations, and the recent history of 
control actions. The adaptive traversal mechanism in the proposed 
GNP supports conditional connections between nodes, especially under 
time-varying network constraints.

This structural advancement is depicted in Fig.  2, which compares 
the traditional and proposed GNP formulations. On the left, the tradi-
tional GNP follows a linear structure in which each node is associated 
with a fixed function, and execution proceeds through a predefined 
sequential path, formalized in Eq.  (9). 
𝑛𝑡+1 = Next(𝑛𝑡), 𝑎𝑡 = 𝑓𝑛𝑡 (𝑠𝑡) (9)

where 𝑛𝑡 denotes the node visited at time 𝑡, Next(𝑛𝑡) is the deterministic 
next node pointer, 𝑠𝑡 is the observed grid state at time 𝑡, 𝑓𝑛𝑡  is the 
decision rule implemented at node 𝑛𝑡, and 𝑎𝑡 is the resulting action 
taken by the agent. Each node processes its input and passes control 
unconditionally to the next node, regardless of the evolving state of the 
grid. The system response is therefore insensitive to diverse operational 
contexts, limiting its effectiveness in dynamic environments.

In contrast, the proposed GNP framework (right) organizes the pol-
icy graph into an interconnected network of nodes, each with adaptive 
behavior. The nodes evaluate the state vector, which can include the 
power flow on the lines, AC power flow constraints, grid topology, 
and dynamically determine their output. The graph includes multiple 
5 
Fig. 2. Regular GNP vs. adaptive GNP. The regular GNP employs sequential 
node activation, whereas the adaptive GNP dynamically adjusts node behavior 
and execution paths based on environmental states.

possible transitions from each node, with links encoding condition-
based execution paths learned through RL. For example, depending 
on whether the overload is localized or widespread, a node might 
route control to a sub-policy targeting either demand-side response or 
topological reconfiguration. The arrows between nodes represent these 
conditional transitions, learned from high-performance decision graphs 
during training. Node connectivity reflects logical dependencies and 
execution flexibility, rather than fixed ordering, as expressed in Eq. 
(10). 
𝑛𝑡+1 ∼ 𝜋trans(𝑛𝑡+1 ∣ 𝑛𝑡, 𝑠𝑡), 𝑎𝑡 = 𝑓𝑛𝑡 (𝑠𝑡) (10)

where 𝜋trans is a stochastic policy over node transitions, and all other 
symbols are as defined previously. The system thus constructs control 
policies by composing rule segments that are most relevant under 
the current grid state, forming context-specific decision pathways that 
align with expert behavior while remaining responsive to uncertainty. 
This structural difference is summarized in Table  2. Thus, in contrast 
to classic GNP, where node transition probabilities remain static, the 
adaptive GNP dynamically adjusts these transitions according to RL 
feedback, enabling the decision pathways to evolve in response to 
the agent’s performance. In general, the proposed structure enables 
the GNP policy to behave as a state-driven control mechanism, ca-
pable of decomposing complex decisions into subgraphs, dynamically 
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Table 2
Comparison of traditional GNP vs. adaptive GNP execution.
 Component Traditional GNP Adaptive GNP  
 Node execution 𝑎𝑡 = 𝑓𝑛𝑡 (𝑠𝑡) 𝑎𝑡 = 𝑓𝑛𝑡 (𝑠𝑡)  
 Node transition 𝑛𝑡+1 = Next(𝑛𝑡) 𝑛𝑡+1 ∼ 𝜋trans(𝑛𝑡+1 ∣ 𝑛𝑡 , 𝑠𝑡) 
 Policy structure Fixed Conditional (learned)  
 Graph behavior Deterministic State-driven  

coordinating local actions, and maintaining interpretability for human 
operators, as will be shown in Section 5. The interaction between 
the GNP evolutionary process and the RL-based adaptive learning is 
further illustrated in Fig.  3, which presents a flowchart summarizing 
the information flow, feedback loop, and optimization stages within 
the proposed GNP–RL collaborative framework. Let 𝐺𝑖 denote the 
𝑖th individual graph in the population, representing a policy 𝜇𝑖 that 
governs decision-making in a Markov decision process with state space 
, action space , and reward function 𝑟 ∶  ×  → R. Each graph 
consists of judgment nodes and processing nodes; judgment nodes perform 
condition-based branching, while processing nodes issue actions 𝑎𝑡 ∈ . 
During interaction with the environment, a graph follows its encoded 
logic to generate trajectories 𝜋𝑖 = (𝑠0, 𝑎0, 𝑟0, 𝑠1,…). During execution, 
each node 𝑛 maintains heuristic parameters 𝜃𝑛, which are updated 
based on local feedback from the environment, typically as a function 
of the observed state, i.e., 𝜃𝑛 ← 𝑓𝑛(𝑠𝑡). This adaptive mechanism refines 
node behavior across generations, supporting the learning dynamics. 
The process continues until a failure condition or episode termination 
is met. The cumulative reward along 𝜋𝑖 defines the fitness 𝐹  of 𝐺𝑖, Eq. 
(11), which reflects the operational lifespan of the graph under dynamic 
grid conditions. This formulation inherently prioritizes policies that 
maintain safe grid operation. 

𝐹 (𝐺𝑖) =
𝑇−1
∑

𝑡=0
𝑟𝑡+1 (11)

The evolution of the graph population  is governed by Algorithm 
1, which integrates crossover and mutation operators as defined in 
Algorithm 2. A two-stage crossover mechanism is employed to balance 
exploitation and exploration:

1. Exploitation-driven crossover: selects both parents 𝑃1, 𝑃2 from 
the top-performing 50% of the population to preserve high-
fitness substructures.

2. Exploration-driven crossover: pairs elite individuals (top 𝑒𝑖%) 
with non-elite ones to introduce novel combinations and main-
tain diversity.

Random selection from a finite set is denoted by 𝑥 ∼  (𝑆), where 
  represents the uniform distribution over set 𝑆. Concatenation of 
gene segments is expressed using the symbol ∥, while sub-vectors are 
denoted by slicing notation, e.g., 𝑃 [1∶𝑥] refers to the first 𝑥 elements 
of parent 𝑃 , and 𝑃 [𝑥+1∶𝐿] refers to the remaining portion. Individual 
candidates 𝑃1, 𝑃2 are removed from their selection pools via set subtrac-
tion, indicated by 𝑆 ⧵ {𝑃 }. The crossover logic uses inline conditional 
checks such as 𝚛𝚊𝚗𝚍𝚘𝚖() < 𝑐𝑝1 to decide probabilistic events directly, 
avoiding auxiliary variables. Mutation is applied by modifying a ran-
dom subsequence of each individual with probability 𝑚𝑝, constrained 
by a maximum range 𝜆max ⋅ 𝐿, where 𝐿 is the gene length. The mod-
ification could be defined by ignoring/adding conditional constraints, 
ignoring/adding a node, decreasing/increasing a threshold, or changing 
a criterion. This mutation operates directly on the graph structure by 
modifying node logic or interconnections.

After each generation, the elite graph 𝐺∗ is updated by selecting the 
graph with the highest fitness – Eq.  (12). 
𝐺∗ = arg max

𝐺 ∈
𝐹 (𝐺𝑖) (12)
𝑖

6 
Fig. 3. Flowchart illustrating the fusion between GNP and RL, showing how 
the RL-based feedback updates guide the evolutionary process toward adaptive 
and optimal decision graph structures.

The GNP algorithm executes multiple decision-making agents (GNP 
graphs) in parallel, each interacting with the environment and col-
lecting diverse experiences. While the entire population contributes to 
exploration through varied behaviors, learning and policy updates are 
guided by the elite 𝐺∗ graph, identified as the best-performing indi-
vidual based on the cumulative reward. This design enables efficient 
reuse of experience across generations and ensures that optimization 
is focused on high-quality policies. By decoupling exploration from 
exploitation, where population diversity drives exploration and the 
elite graph directs learning, the framework achieves both robustness 
and adaptability in evolving effective control strategies.

2.3. Decision tree rule extraction

It has been recognized that a single decision graph may not gen-
eralize optimally across diverse grid conditions due to varying fault 
locations, network topologies, and intertemporal dependencies. There-
fore, the elite policies of the GNP algorithm are used to build a rule 
pool, consisting of the best-performing decision graph for each episode 
in the last generation. In particular, the elite graph represents an action 
selection trajectory that has the highest possible performance in an 
episodic evaluation; this is quite important, since it has optimized the 
impact of an action at the present grid condition (present timestep) and 
its post-impact in the next time steps. Therefore, elite-derived actions 
per timestep will be used to generate labeled datasets (i.e., consisting 
of grid state features and the corresponding actions), in which these 
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Algorithm 1: Adaptive GNP evolutionary algorithm
Data:  Initial population of size 𝑁 GNP graphs 

{𝐺1, 𝐺2,… , 𝐺𝑁};
Crossover probabilities 𝑐𝑝1, 𝑐𝑝2 ∈ (0, 1);
Mutation probability 𝑚𝑝 ∈ (0, 1);
Maximum mutation range 𝜆max ∈ R+;
Total reward 𝑅;
Result: Elite graph 𝐺∗ with highest fitness

1 Initialize population:  = {𝐺1, 𝐺2,… , 𝐺𝑁};
2 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← −∞, 𝐺∗ ← None;
3 while termination condition not met do
4 foreach graph 𝐺𝑖 ∈  do
5 𝑅 ← 0;
6 Initialize RL environment  at state 𝑠0;
7 while episode not done do
8 𝑛𝑡 ← 𝑛start of 𝐺𝑖;
9 while 𝑛𝑡 is a judgment node do
10 𝑛𝑡+1 ← 𝜋𝑖(𝑛𝑡+1 ∣ 𝑛𝑡, 𝑠𝑡);
11 end 
12 if 𝑛𝑡 is a processing node then
13 𝑎𝑡 ← 𝑓𝑛𝑡 (𝑠𝑡);
14 Simulate 𝑎𝑡 in environment: (𝑠𝑡, 𝑎𝑡) → 𝑠𝑡+1;
15 𝑟𝑡+1 ← reward from  ;
16 𝑅 ← 𝑅 + 𝑟𝑡+1;
17 𝑠𝑡 ← 𝑠𝑡+1, 𝑡 ← 𝑡 + 1;
18 end 
19 Update heuristic parameters of node: 𝜃𝑛 ← 𝑓𝑛(𝑠𝑡+1);
20 end 
21 𝐹 (𝐺𝑖) ←

∑𝑇−1
𝑡=0 𝑟𝑡+1 = 𝑅;

22 if 𝐹 (𝐺𝑖) > 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 then
23 𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ← 𝐹 (𝐺𝑖);
24 𝐺∗ ← copy of 𝐺𝑖
25 end 
26 end 
27  ← GNP_Operators( , 𝑐𝑝1, 𝑐𝑝2, 𝑚𝑝, 𝜆max);
28 end 
29 return 𝐺∗

datasets are then used to train a multistage DT to capture different 
components of control logic. During training, the agent was initially al-
lowed to explore a broad range of control actions, including redispatch, 
curtailment, and storage activation. However, as evolution progressed, 
the population of decision graphs consistently converged toward topo-
logical reconfiguration — particularly bus-splitting and line switching 
actions — as the dominant and most effective strategy. This behav-
ior aligns with findings from the Learning to Run a Power Network 
(L2RPN) competitions framework, which emphasizes that topological 
operations are the most direct and cost-efficient means of alleviat-
ing congestion and maintaining grid stability, indicating that power 
flexibility actions were less effective, and it may also involve a CO2
emissions increase (e.g., from RES curtailment) and higher operational 
cost. For instance, the Binbinchen team (Huawei) [32], which achieved 
second place in the L2RPN WCCI 2020 competition, developed a deep 
reinforcement learning Actor–Critic agent with PPO that was trained 
exclusively on topological actions, restricted to 200 safe configurations 
following an expert-guided reduction phase. Similarly, the RTE expert 
system [25] focused solely on bus-splitting operations. In particular, 
the final analysis of the L2RPN NeurIPS 2020 challenge in the ro-
bustness track [2] challenge demonstrated that several of the toughest 
episodes (Jan 28.1, Nov 34.1, Apr 42.2, Oct 21.1) remained feasible 
if the agent relied solely on topological actions. These findings justify 
the convergence of the agent’s decision-space making onto topology 
control, aligning with both real-world operational practice and proven 
7 
Algorithm 2: GNP operators: crossover and mutation
Data:  Population size 𝑁 ; crossover rates 𝑐𝑝1, 𝑐𝑝2 ∈ (0, 1); 

mutation rate 𝑚𝑝; max mutation span 𝜆max;
Subgroups: top_half, elite, non_elite;
Result: New population 𝑃new

1 𝑃new ← ∅;
2 for 𝑖 ← 1 to |top_half| do
3 if |top_half| = 0 then
4 break;
5 end 
6 Select 𝑃1, 𝑃2 ∼  (top_half), without replacement;
7 top_half← top_half ⧵ {𝑃1, 𝑃2};
8 𝑥 ∼  ({1,… , 𝐿−1});
9 if random() < 𝑐𝑝1 then
10 𝑐 ← 𝑃1[1∶𝑥] ∥ 𝑃2[𝑥+1∶𝐿];
11 else if random() < 𝑐𝑝2 then
12 𝑐 ← 𝑃2[1∶𝑥] ∥ 𝑃1[𝑥+1∶𝐿];
13 else
14 𝑐 ← random choice(𝑃1, 𝑃2);
15 end 
16 𝑃new ← 𝑃new ∪ {𝑐};
17 end 
18 for 𝑖 ← 1 to |non_elite| do
19 if |non_elite| = 0 then
20 break;
21 end 
22 Select 𝑃1 ∼  (elite);
23 Select 𝑃2 ∼  (non_elite), without replacement;
24 non_elite ← non_elite ⧵ {𝑃2};
25 𝑥 ∼  ({1,… , 𝐿−1});
26 if random() < 𝑐𝑝1 then
27 𝑐 ← 𝑃1[1∶𝑥] ∥ 𝑃2[𝑥+1∶𝐿];
28 else if random() < 𝑐𝑝2 then
29 𝑐 ← 𝑃2[1∶𝑥] ∥ 𝑃1[𝑥+1∶𝐿];
30 else
31 𝑐 ← random choice(𝑃1, 𝑃2);
32 end 
33 𝑃new ← 𝑃new ∪ {𝑐};
34 end 
35 foreach 𝑐 ∈ 𝑃new do
36 if random() < 𝑚𝑝 then
37 Modify a subsequence of 𝑐 (length ≤ 𝜆max ⋅ 𝐿);
38 end 
39 end 
40 return 𝑃new

benchmark evidence. As a result, GNP-DT focused solely on topology 
reconfiguration, though it can accommodate redispatch actions without 
changing its formulation. The sequence of DT models is defined as 
follows:

(i) The first DT model (DT1) to classify the flexibility type (e.g., line 
reconnection vs. bus reconfiguration);

(ii) The second DT model (DT2) to estimate the required number of 
flexibility actions;

(iii) The third DT model (DT3) to estimate the specific line(s)/bus(es) 
to operate.

(iv) The fourth DT model (DT4) will be used only if the detected 
flexibility type involves bus reconfiguration (bus splitting) re-
garding DT1. The set of top-𝑘 most probable feasible topology 
reconfiguration actions for the bus identified by DT3 is extracted 
from DT4, based on the predicted class probabilities at the leaf 
nodes.
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Table 3
Summary of the DTs and their corresponding state variables.
 Variable DT1 DT2 DT3 DT3 DT3 DT3 DT4  
 Action type Any Any Bus reconfig. Line disconn. Bus recovery Line reconnection Bus reconfig. 
 Cong. line IDs ✓ ✓ ✓ ✓ 7 7 ✓  
 Max overload 7 ✓ ✓ 7 7 7 7  
 Split bus IDs ✓ ✓ ✓ ✓ ✓ 7 ✓  
 Disconn. line IDs ✓ ✓ ✓ ✓ ✓ ✓ ✓  
 Cong. line count ✓ ✓ ✓ ✓ 7 7 ✓  
 Split bus count ✓ ✓ ✓ ✓ ✓ 7 ✓  
 Disconn. line count ✓ ✓ ✓ ✓ ✓ ✓ ✓  
Table  3 presents a summary of the relevant state variables consid-
ered for different decision trees (DT1-DT4) and actions in the system. 
Each row indicates whether a specific variable (for example, congested 
line IDs, maximum overload, split bus count) is used (✓) or not (7) by 
the corresponding decision logic. The variables include:

• Cong. Line IDs: identifiers of congested lines;
• Max Overload: maximum overload value among congested lines;
• Split Bus IDs: identifiers of splitted buses;
• Disconn. Line IDs: identifiers of disconnected transmission lines;
• Cong. Line Count: total number of congested lines;
• Split Bus Count: number of splitted buses;
• Disconn. Line Count: number of disconnected lines.

DT3 and DT4 are dependent on the action type; in this regard, Bus 
reconfig. refers to bus splitting. Line disconn. means disconnecting a 
transmission line to isolate a fault or relieve congestion. Bus recovery 
restores a previously reconfigured bus (split bus) to the original topol-
ogy (unaltered topology), and line reconnection involves re-energizing 
a previously disconnected line to resume normal operation. In this 
work, line identifiers (e.g., Cong. Line ID_*) are not arbitrary indices but 
are mapped to physically meaningful locations in the power grid. Each 
identifier corresponds to a specific transmission line whose electrical 
location is associated with a predefined zone (area) or group of feeders 
based on the grid layout. This structured mapping allows the model 
to implicitly reason about localized congestion using indexed features 
aligned with the physical topology of the system.

This module is a hierarchical approach in which each stage con-
strains and informs the subsequent one. For instance, the flexibility 
type determined in the first stage conditions the search space for the 
next model, which predicts how many units must be activated, and in 
turn, this output influences the final model that selects which specific 
assets to operate. Formally, each stage is modeled as a conditional 
expectation: 
𝑦̂𝑟 = E

[

𝑦𝑟 ∣ 𝑋, 𝑦̂𝑟−1, 𝑦̂𝑟−2,… , 𝑦̂𝑟−𝑘, 𝜃
]

+ 𝜖𝑟 (13)

where 𝑦̂𝑟 denotes the predicted decision component at rule stage 𝑟, 
conditioned on the input features 𝑋, preceding predicted components 
𝑦̂𝑟−1, 𝑦̂𝑟−2,… , 𝑦̂𝑟−𝑘, and model parameters 𝜃. The parameter set 𝜃 repre-
sents the learnable weights of the conditional model, including decision 
thresholds, node weights, and any coefficients used to combine input 
features and prior stage predictions. These parameters are estimated 
during training by minimizing a suitable loss function (e.g., mean 
squared error or cross-entropy) over the training episodes, using the 
observed target outputs 𝑦𝑟. The residual term 𝜖𝑟 captures unmodeled 
variability at stage 𝑟. The residual term 𝜖𝑟 accounts for the prediction 
error. This layered rule extraction allows the DT ensemble to cap-
ture interdependencies among rule components, while enabling both 
interpretability and domain-relevant fidelity.

3. Test case

3.1. Description

The IEEE 118-bus system environment, featured in the L2RPN com-
petition at the 2022 World Congress on Computational Intelligence 
8 
(WCCI) [33], serves as the test case and is illustrated in Fig.  4. This 
case incorporates an adversarial module that heuristically simulates 
line outages to emulate the N-1 security criterion, while allocating 10% 
to 30% of the generation mix to RES. It comprises 118 substations, 186 
lines, 91 loads, and 62 generators.

A set of 48 episodes was generated, using the methodology from
[34], extracted from 12 months. Each scenario in the dataset repre-
sents a full operational episode. Scenarios were selected to cover all 
months of the year and a variety of operating conditions, including 
normal operation, high load, renewable variability, congestion-prone 
situations, and contingencies. This approach ensures that both the 
training and test sets are representative of the full range of realistic 
grid conditions, allowing for robust evaluation of the proposed GNP-
DT agent. The episodes comprise 2018 time steps with a 5-minute 
resolution to feed the GNP method, in which the elite graphs generated 
49,186 grid operating conditions and corresponding action set pairs 
for training DT models. All experiments use episode-level partitioning: 
each scenario corresponds to a full operational episode and is assigned 
entirely to either the training or test set to prevent temporal leakage. To 
ensure both coverage and separation, four episodes from each month 
were used for training and three episodes for testing, spanning the 
full year and capturing seasonal variations and diverse grid operating 
conditions. For robustness, the evaluation was conducted using 20 dif-
ferent random seeds for partitioning and training, ensuring that results 
are statistically representative and not dependent on a specific initial-
ization. The proposed GNP algorithm interacted with the simulated 
power grid using the Grid2Op AI-friendly digital environment [19] as 
the RL environment. To ensure a robust evaluation of the proposed 
methodology, a distinct test set containing data from various months 
was employed during the testing phase.

3.2. Evaluation metric and benchmarks

In terms of performance indicator, the score adopted in the L2RPN 
competition [2] was used to allow a fair comparison with baseline 
agents that evaluates both the operational cost and the survivability 
of the agent. The score ranges from [−100.0, 0.0, 80.0, 100.0], each value 
corresponding to a distinct level of performance by the agent during 
an episode. A score of −100.0 indicates that no steps were played, 
reflecting the maximum blackout penalty applied across all steps in 
all scenarios. A score of 0.0 represents the performance of a ‘‘Do-
Nothing’’ baseline agent that takes no action and does not influence 
the scenario; if this agent completes the episode, the effective score 
range becomes [−100.0, 0.0, 100.0]. A score of 80.0 indicates that the 
agent successfully plays through all scenarios without correcting line 
disconnections caused by overloads; losses in this case are equal to 
the difference between total generation and total consumption in each 
scenario, and lines under maintenance are reconnected after their 
maintenance period. The maximum score of 100.0 is awarded when the 
agent both completes all scenarios and optimizes system performance 
by reducing losses to 80% of those previously computed. Thus, higher 
scores reflect more efficient decision-making and longer survival across 
scenarios.

The following agents from the Grid2Op baselines, which employ 
topological reconfiguration strategies for congestion management, were 
selected for benchmarking:
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Fig. 4. IEEE 118-bus system of the L2RPN-WCCI-2022 competition. All the elements at each substation are connected to bus-1 in the reference topology, which 
could be switched to bus-2 through bus splitting actions.
• ExpertOp4Grid: An ES which tries to solve congestion issues 
within the grid [25] using an influence graph;

• Enhanced ExpertOp4Grid: An ES which is an enhanced version 
of ExpertOp4Grid agent explained in Section 2.1;

• MILP agent: A Mixed Integer Linear Programming (MILP) agent 
that seeks to minimize the overthermal lines based on DC approx-
imation [35] with CBC-solver [36];

• CAgent: Curriculum Agent (Senior agent) that consists of a deep 
RL model based on PPO [24] with a senior threshold of 𝜌𝑠𝑒𝑛𝑖𝑜𝑟 =
0.95. Note that this agent is an enhanced version of a model 
originally developed for a past L2RPN competition [32], which 
inspired subsequent agents in later editions and also the win-
ning solution of the 2023 Paris Region AI Challenge for Energy 
Transition [37].

The hyperparameters of the proposed GNP algorithm, including the 
crossover probabilities, mutation rate, and mutation range described in 
Section 2.2, were tuned to ensure robust convergence and satisfactory 
performance of the algorithm. The Bayesian optimization method was 
applied across 16 episodes covering the whole season of the year to en-
sure that the selected hyperparameters generalize beyond a single run. 
Table  4 presents the hyperparameters of the GNP algorithm. For clarity, 
the following nomenclature is adopted throughout the experiments:
GNP-DT-1 refers to the agent trained with the survival-duration reward 
function and experimental hyperparameters; GNP-DT-2 corresponds to 
the agent trained with the proposed cost-aware reward function and 
optimized hyperparameters; and GNP-DT-3 denotes the agent trained 
with the survival-duration reward function but using the optimized 
hyperparameters.

All experiments were conducted on a system running on a cloud-
based virtual machine with an AMD EPYC CPU with 8 cores at 2.94 
GHz, 32 GB of RAM, and Microsoft Windows 10 Pro.

4. Experimental results

This section presents the experimental results, evaluating the per-
formance of the proposed agent across multiple random seeds and 
scenarios. The analysis includes a comparison with three state-of-the-
art baseline models (available in the Grid2Op environment) and focuses 
on key metrics to assess the agent’s effectiveness and consistency.
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Table 4
Hyperparameters of the adaptive GNP algorithm.
 Hyperparameter Experimental Optimized 
 Population size 30 38  
 Elite fraction 0.1 0.24  
 Crossover probability 𝑐𝑝1 0.5 0.41  
 Crossover probability 𝑐𝑝2 1 0.70  
 Mutation probability 𝑚𝑝 0.3 0.33  
 Maximum mutation range 𝜆max 0.7 0.77  

Median survival time comparison. Fig.  5 presents the median survival 
time across 36 test episodes for all evaluated agents. Among the pro-
posed variants, GNP-DT-2 and GNP-DT-3 demonstrate consistently su-
perior performance, reaching the maximum survival limit of 2018 steps 
in multiple episodes (e.g., Jun_20, Sep_5_2). Notably, the cost-aware 
reward used in GNP-DT-2 results in comparable or even improved 
average survivability relative to the survival-based agents (GNP-DT-1
and GNP-DT-3), suggesting that cost optimization implicitly encourages 
longer stable operation. In contrast, the optimization-based MILP and 
the deep RL-based CAgent exhibit greater variability across episodes, 
with early terminations in challenging conditions such as Feb_28 and
Dec_12. The expert-based Enhanced ExpertOp4Grid maintains steady 
performance and consistently surpasses the baseline ExpertOp4Grid, 
confirming the benefit of its refined heuristics. The passive Do-Nothing
agent remains the weakest performer throughout all episodes. Overall, 
the GNP-DT family demonstrates the most resilient and adaptive be-
havior under diverse grid conditions, with GNP-DT-2 offering the best 
trade-off between cost efficiency and operational stability.
Operational cost comparison. In terms of average operational cost, the 
proposed GNP-DT variants demonstrate a clear improvement in eco-
nomic efficiency. Specifically, GNP-DT-2, which employs the cost-aware 
reward, achieved the lowest average cost of 35.12 Me, followed by
GNP-DT-3 at 35.6 Me and GNP-DT-1 at 38.22 Me. This indicates that 
integrating cost considerations into the reward function enhances both 
economic performance and overall stability. Among the comparative 
agents, the Enhanced ExpertOp4Grid and CAgent achieved moderate cost 
reductions with 40.15 Me and 40.40 Me, respectively, outperforming 
the baseline ExpertOp4Grid (43.02 Me). Conversely, the optimization-
based MILP agent exhibited the highest operational cost at 58.80 Me, 
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Fig. 5. Visualization of the median survival time per episode. Each bar corresponds to the median survival time in the respective episode across all seeds.
Table 5
Performance comparison between different agents on L2RPN score and survival time.
 Agent L2RPN Score Survival time
 Mean Std Median 1st quantile 3rd quantile Min Max Median MSTCM  
 Do nothing 0 0 0 0 0 0 0 158 158  
 ExpertOp4Grid [25] 37.5 5.85 36.96 33.48 42.08 24.93 50.52 804 930.75  
 Enhanced ExpertOp4Grid 39.04 7.95 36.63 34.09 44.93 26.3 56.97 981 1170  
 GNP-DT-1 44.16 7.37 41.94 38.82 49.72 33.64 59 1034 1143.25 
 GNP-DT-2 48.1 7.07 46.01 43.73 52.73 36.04 62.33 1147 1439.5  
 GNP-DT-3 46.99 7.43 45.68 41.97 52.97 35.08 62.12 1135 1282.25 
 MILP [35] 6.6 9.62 4.16 −0.2 10.5 −10.55 30.88 511 701.25  
 CAgent [24] 37.7 6.89 37.35 34.07 43.12 23.29 50.85 1032 1257.5  
reflecting limited adaptability under dynamic grid conditions. Overall, 
the GNP-DT family effectively balances system survivability and op-
erational cost, with GNP-DT-2 offering the most cost-efficient control 
strategy.

L2RPN performance score. The L2RPN score quantifies the overall op-
erational effectiveness and reliability of the agents across dynamic 
grid conditions. Fig.  6 illustrates the distribution of scores across 20 
random seeds for all agents. Among the proposed variants, GNP-DT-
2 achieved the highest mean score of 48.10 with a median of 46.01, 
followed closely by GNP-DT-3 (mean 46.99, median 45.68) and GNP-
DT-1 (mean 44.16, median 41.94). The higher median and tighter 
interquartile range of GNP-DT-2 indicate both improved performance 
and enhanced stability, demonstrating the advantage of incorporating 
cost-awareness into the reward function. Among the comparative base-
lines, the Enhanced ExpertOp4Grid (mean 39.04) surpasses the original
ExpertOp4Grid (mean 37.50) and the deep RL-based CAgent (mean 
37.70), confirming the benefit of refined rule-based heuristics. The
CAgent exhibits comparable spread to ExpertOp4Grid, ranging from 
23.29 to 50.85, though with a slightly lower median. MILP, represent-
ing a DC optimization benchmark, demonstrates the widest variability 
and lowest scores overall, including negative values in some seeds, 
highlighting its instability and inefficiency in this context. Overall, the 
GNP-DT family—particularly GNP-DT-2—demonstrates superior and 
reliable performance across all tested configurations, balancing both 
resilience and cost efficiency.

Table  5 provides a comprehensive comparison of the agents in terms 
of their average L2RPN score, score distribution, and survivability 
metrics. The GNP-DT variants consistently outperform all benchmarks, 
with GNP-DT-2 achieving the highest average score (48.1), reflect-
ing stable and effective control. Its score distribution is particularly 
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Fig. 6. Boxplot of the agent average score across all 20 seeds. Each point 
corresponds to the average score of all scenarios for one seed.

consistent, with a minimum of 36.04 and a third quartile of 52.73, 
while median survival (1147) and MSTCM (1439.5) indicate strong 
robustness across episodes (MSTCM is the median of these survival 
times across all episodes and all seeds, providing a measure of typical 
agent longevity). Compared to CAgent and Enhanced ExpertOp4Grid,
GNP-DT-2 improves the average L2RPN score by up to 28%, GNP-DT-3
by 25%, and GNP-DT-1 by 18%. The superior performance of GNP-
DT-2 agent trained with the cost-aware reward not only achieved a 
higher cumulative score but also demonstrated longer average survival 
times. This indicates that minimizing operational cost indirectly rein-
forces grid survivability, as blackout costs dominate the total episode 
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penalty. Consequently, the cost-aware reward yields both economically 
and operationally efficient control policies. GNP-DT-3 also performs 
strongly (mean = 46.99, median survival = 1135, MSTCM = 1282.25), 
demonstrating the benefits of hyperparameter optimization even with 
the survival-duration reward. GNP-DT-1 achieves a mean score of 44.16 
and median survival of 1034, already surpassing conventional bench-
marks and confirming the progressive improvement across the variants. 
Among the baseline agents, CAgent and Enhanced ExpertOp4Grid show 
competitive scores (37.7 and 39.04, respectively), with CAgent at-
taining a higher MSTCM (1257.5) than ExpertOp4Grid (930.75). In 
contrast, MILP exhibits low reliability (mean = 6.6, median survival 
= 511, MSTCM = 701.25), and the Do Nothing agent scores zero with 
minimal survival. Overall, GNP-DT-2 achieves the highest performance 
and robustness, demonstrating that cost-aware training effectively bal-
ances score maximization and operational longevity, while other agents 
either underperform or show greater variability in survival.
Inference time. The average time required to compute and apply an 
action varies significantly across agents. The proposed GNP-DT agent 
demonstrates the fastest inference time, requiring only 0.11 s on aver-
age, making it highly suitable for real-time deployment. In comparison, 
the ExpertOp4Grid baseline responds in 0.54 s, while both the Enhanced 
ExpertOp4Grid and CAgent take longer, averaging 2.23 and 2.33 s, 
respectively. The MILP method is the slowest, with an average inference 
time of 20.58 s, an expected outcome given that it requires solving 
an MILP problem at each timestep. These results highlight the advan-
tage of GNP-DT in real-time decision making under operational time 
constraints.

5. Interpretability: A discussion

This section discusses the interpretability of the GNP-DT method 
during both the learning and operational phases.

5.1. Learning phase

To provide some insight into the reasoning window of the learning 
phase, Tables  6 and 7 together illustrate three decision graphs 𝐺𝑎, 𝐺𝑏, 
and 𝐺𝑐 to address line congestion in a specific period of an episode. 
In Table  6, HB, LB, and DSB stand for hub bus, buses on the looped 
path, and downstream buses (Table  1 defines each type of these buses), 
respectively. In addition, the numbers in the detection rows represent 
the congested lines. The behavior of each graph is shaped by its internal 
judgment nodes and their relevant functions and parameters, as men-
tioned in Table  1 in Section 2.1. The key parameters that distinguish 
the graphs are presented in Table  7, which can cause changes in the 
functions of the graphs as follows:

• The threshold 𝐼𝑡ℎ defines the overload limit used to trigger the 
action proposal process; both 𝐺𝑎 and 𝐺𝑐 use a strict threshold 
(100%), while 𝐺𝑏 lowers this to 90%, allowing for a proactive 
action.

• The parameter 𝛽𝑡ℎ, which sets the threshold coefficient for de-
termining the influence path, is highest in 𝐺𝑏 (0.6), indicating a 
more rigorous but potentially narrower focus in selecting effec-
tive paths. In contrast, 𝐺𝑐 balances this (0.4), leading to more 
robust but flexible action pathways. For example, with the same 
detection criterion, when congestion starts on lines 12 and 20 and 
is followed by lines 41, 44 and 51, the flexible units activated by 
𝐺𝑐 were more effective in alleviating congestion at each timestep, 
the trajectory of actions (bus 67 → bus 81 → bus 93 → bus 95) 
outperformed the selection of actions (bus 68 → bus 76 → lines 
24 and 146) by 𝐺𝑎.

• The 𝜎1𝑐𝑝 mentioned in Table  1 stands for the actions with the 
highest priority, where 𝐺𝑎 and 𝐺𝑐 give the highest focus to 
the buses at the hub points, and 𝐺𝑏 has the most tendency to 
reconfigure the buses on the looped path, which was in some 
timesteps a less effective selection.
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• The quality of the action in terms of the topological score is 
indicated by 𝜎𝑡 as mentioned in Table  1. In this regard, releasing a 
critical congestion is satisfying for 𝐺𝑎 and 𝐺𝑏, while 𝐺𝑐 demands 
full topological resolution of all congestion, critical or not, before 
terminating the search. This stricter criterion ensures that 𝐺𝑐
systematically avoids the risk of creating new congestions and 
provides a safer solution that relieves all overloads.

The observed action trajectory confirms these architectural differ-
ences. 𝐺𝑎 acts sequentially on hub buses but fails to prevent collapse 
due to late response and incomplete resolution. 𝐺𝑏 detects earlier 
and applies diverse actions, including looped and downstream bus 
reconfigurations, surviving the scenario later because it raises more 
overload concerns with its action trajectory. 𝐺𝑐 , however, mirrors 
𝐺𝑎 in the type of action but distinguishes itself by selecting actions 
that fully mitigate system risk, leading to survival without creating 
new overloads. These comparisons demonstrate the interpretability of 
the proposed method during the learning phase and support human 
operators in reasoning about and building trust in the resulting elite 
graphs. For example, this traceable possibility in GNP can provide the 
operator with such a sensitivity analysis on the graph parameters that 
justifies the superiority of 𝐺𝑐 over 𝐺𝑎 and 𝐺𝑏.

In addition, this example provides insight into the evolutionary 
phase of the GNP. The initial seed corresponds to the baseline ex-
pert system (Ga). Through evolutionary operators and reinforcement-
learning-based fitness evaluation, the GNP progressively adapts, pro-
ducing intermediate graphs (Gb) and ultimately an elite graph (Gc). 
Comparative results show that Gc consistently outperforms both Ga and 
Gb, confirming that the performance gains are attributable to the learn-
ing and adaptation process rather than to the expert initialization alone. 
This distinction highlights that while the expert provides a structured 
starting point, the final evolved agent embodies novel strategies that 
emerge through the learning process.

5.2. Operational phase

To demonstrate the interpretability of the proposed method during 
the operational phase, a representative portion of the complete DT is 
illustrated in Fig.  7. This selected partial tree is from the DT3 model 
(bus reconfiguration), which is relevant to determining the ID of the 
flexible unit (DT2) when the flexibility type (DT1) and the number of 
needed actions (DT2) have been previously predicted.

In the DT plot, value attribute represents the proportional distribu-
tion of these instances across classes, and the class attribute corresponds 
to the majority class, indicating the predicted outcome at that node. 
Each box’s color represents the dominant class in that node. Nodes 
sharing the same color are mostly associated with the same class. The 
intensity of the color indicates the node’s purity – darker shades mean 
the node contains mostly one class, while lighter shades suggest a mix 
of classes. This visual aid helps quickly identify which class is favored 
and how confidently the tree makes its splits. Moreover, left arrows 
correspond to True, and right arrows correspond to False for each split.

This example determines the next control action based on the grid 
congestion state and prior topology changes. Cong. Line ID_1 represents 
the identifier of the line with the highest loading percentage (i.e., most 
congested) at the current timestep, followed by Cong. Line ID_2, Cong. 
Line ID_3, etc., sorted in descending order based on their loading 
levels. Split Bus ID_i indicates the ID of a bus that has already been 
reconfigured, sorted by ID. The class output of the tree corresponds to 
the ID of a candidate bus selected for reconfiguration. Due to limited 
space, the tree was plotted for only three classes using reconfiguration 
buses 16, 67, and 93. Some illustrative human-readable rules could be 
extracted from the DT as follows:

1. If Cong. Line ID_1 is in 𝑍1 (i.e., the line with the maximum over-
load is situated in zone 𝑍1) and Cong. Line ID_2 is in 𝑍1 or 𝑍2, 
the model selects bus 67 from 𝑍1 as the next reconfiguration 
candidate—that is, the bus proposed for splitting to alleviate 
congestion at the current timestep.
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Table 6
Comparison of decision graph action trajectory corresponds to the line congestion detection across 9 illustrative timesteps.
 Time step 1 2 3 4 5 6 7 8 9  
 𝐺𝑎: Detection – − {12, 20} {20} {41, 44, 51,

175, 185}
Collapse Collapse Collapse Collapse  

 𝐺𝑎: Action – − Reconfig. 
HB 68

Reconfig. 
HB 76

Disconn. 
{24, 146}

– − – –  

 𝐺𝑏: Detection {20} {41, 51} {41, 51} {12} {12} {41, 44, 51} {175} {175} –  
 𝐺𝑏: Action Reconfig. 

LB 81
Disconn. 
{24, 16}

Reconfig. 
LB 79

Disconn. 
{13, 122}

Reconfig. 
LB 79

Reconfig. 
DSB 95

Reconfig. 
DSB 67

Reconfig. 
DSB 79

–  

 𝐺𝑐 : Detection – − {12, 20} {20} {41, 44, 51} {41} – − –  
 𝐺𝑐 : Action – − Reconfig. 

HB 67
Reconfig. 
HB 81

Reconfig. 
HB 93

Reconfig. 
HB 95

– − −  
Fig. 7. Excerpt from DT3 (bus reconfig.) for flexible unit ID determination. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
Table 7
Summary of functional differences between decision graphs.
 Aspect 𝐺𝑎 𝐺𝑏 𝐺𝑐  
 𝐼𝑡ℎ 100% 90% 100%  
 𝛽𝑡ℎ 0.2 0.6 0.4  
 𝜎1

𝑐𝑝 Hub Loop Hub  
 𝜎𝑡 Critical issue Critical issue All issues 

2. If Cong. Line ID_1 is in 𝑍2, and Cong. Line ID_4 in 𝑍3, and Split 
Bus ID_1 in {𝑍1, 𝑍2, 𝑍3}, then the model returns bus 93 from 
𝑍3 for splitting.

3. If Cong. Line ID_1 out of {𝑍1, 𝑍2} and Split Bus ID_2 is in 
{𝑍1, 𝑍2, 𝑍3}, bus 16 from 𝑍2 is the candidate for reconfigu-
ration action (bus splitting).

4. If Cong. Line ID_1 is in 𝑍2, and Cong. Line ID_4 is in {𝑍1, 𝑍2, 𝑍3}, 
then the model selects bus 67 from 𝑍1 for bus splitting.

The interpretability achieved through the DT extraction is primar-
ily logical, as it expresses the agent’s control policy in the form of 
explicit ‘‘if–then’’ decision rules. Although such interpretability does 
not constitute causal reasoning in the strict analytical sense, it pro-
vides a practical and meaningful explanation of the agent’s actions 
that aligns with human operator expertise. Each path in the DT di-
rectly links observable grid states to corresponding control decisions, 
allowing operators to trace why a particular action is recommended 
under specific system conditions and another action is suitable under 
a different operating condition. For example, a rule such as ‘‘If con-
gestion occurs in Zone-1 and an overload also exists in Zone-2, then 
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split Bus-X and Bus-Y could be reconfigured only if the congestion 
is in Zone-1’’ demonstrates the underlying decision logic that con-
nects system observations to a physically interpretable control measure. 
This transparency enables operators to validate, trust, and refine the 
automated control behavior, bridging the gap between data-driven 
intelligence and human operational understanding. Consequently, the 
proposed interpretability mechanism provides actionable insight into 
the decision-making process, even though it remains logically rather 
than causally explanatory.

6. Conclusions

This work proposed an interpretable and adaptive control frame-
work based on Genetic Network Programming with Decision Trees 
(GNP-DT) for real-time congestion management in power systems. 
The agent integrates rule-based structures with RL to evolve effec-
tive control strategies, maintaining both interpretability and adapt-
ability. Through extensive evaluation across multiple stochastic seeds 
and benchmark agents, GNP-DT demonstrated superior performance in 
terms of L2RPN score, survival time, and operational cost compared 
to baseline methods of different natures, including an expert system, 
MILP with DC approximation, and a deep RL-based agent (CAgent). In 
particular, GNP-DT achieved an improvement in the average score of 
up to 28% over ExpertOp4Grid and the deep RL agent and consistently 
ensured a higher median survival and a lower average operational cost.

Moreover, the framework maintained high computational
efficiency, exhibiting significantly shorter inference times than
optimization-based and deep learning approaches. The alignment of 
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GNP-DT performance with interpretable design principles supports its 
practical applicability in real-world scenarios that require transparent 
and reliable grid control. Future work could research the integration of 
multi-agent coordination and real-time memory sharing mechanisms to 
further enhance the adaptability and scalability of control strategies in 
large-scale power systems.
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